26 research outputs found

    Structural recovery of ion implanted ZnO nanowires

    Get PDF
    5 pagesInternational audienceIon implantation is an interesting method to dope semiconducting materials such as zinc oxide provided that the implantation-induced defects can be subsequently removed. Nitrogen implantation followed by anneals under O2 were carried out on zinc oxide nanowires in the same conditions as in a previous study on bulk ZnO [J. Appl.Phys. 109, 023513 (2011)], allowing a direct comparison of the defect recovery mechanisms. Transmission electron microscopy and cathodoluminescence were carried out to assess the effects of nitrogen implantation and of subsequent anneals on the structural and optical properties of ZnO nanowires. Defect recovery is shown to be more effective in nanowires compared with bulk material due to the proximity of free surfaces. Nevertheless, the optical emission of implanted and annealed nanowires deteriorated compared to as-grown nanowires, as also observed for unimplanted and annealed nanowires. This is tentatively attributed to the dissociation of excitons in the space charge region induced by O2 adsorption on the nanowire surface

    Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate

    Get PDF
    Selective area growth of GaN nanostructures has been performed on full 2" c-sapphire substrates using Si3N4 mask patterned by nanoimprint lithography (array of 400 nm diameter circular holes). A new process has been developed to improve the homogeneity of the nucleation selectivity of c-oriented hexagonal prismatic nanostructures at high temperature (1040\circ C). It consists of an initial GaN nucleation step at 950 \circ C followed by ammonia annealing before high temperature growth. Structural analyses show that GaN nanostructures are grown in epitaxy with c-sapphire with lateral overgrowths on the mask. Strain and dislocations are observed at the interface due to the large GaN/sapphire lattice mismatch in contrast with the high quality of the relaxed crystals in the lateral overgrowth area. A cathodoluminescence study as a function of the GaN nanostructure size confirms these observations: the lateral overgrowth of GaN nanostructures has a low defect density and exhibits a stronger near band edge (NBE) emission than the crystal in direct epitaxy with sapphire. The shift of the NBE positions versus nanostructure size can be mainly attributed to a combination of compressive strain and silicon doping coming from surface mask diffusion

    Polarity in GaN and ZnO: Theory, measurement, growth, and devices

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Rev. 3, 041303 (2016) and may be found at https://doi.org/10.1063/1.4963919.The polar nature of the wurtzite crystalline structure of GaN and ZnO results in the existence of a spontaneous electric polarization within these materials and their associated alloys (Ga,Al,In)N and (Zn,Mg,Cd)O. The polarity has also important consequences on the stability of the different crystallographic surfaces, and this becomes especially important when considering epitaxial growth. Furthermore, the internal polarization fields may adversely affect the properties of optoelectronic devices but is also used as a potential advantage for advanced electronic devices. In this article, polarity-related issues in GaN and ZnO are reviewed, going from theoretical considerations to electronic and optoelectronic devices, through thin film, and nanostructure growth. The necessary theoretical background is first introduced and the stability of the cation and anion polarity surfaces is discussed. For assessing the polarity, one has to make use of specific characterization methods, which are described in detail. Subsequently, the nucleation and growth mechanisms of thin films and nanostructures, including nanowires, are presented, reviewing the specific growth conditions that allow controlling the polarity of such objects. Eventually, the demonstrated and/or expected effects of polarity on the properties and performances of optoelectronic and electronic devices are reported. The present review is intended to yield an in-depth view of some of the hot topics related to polarity in GaN and ZnO, a fast growing subject over the last decade

    Synthesis and Study of a Ce-Doped La/Sr Titanate for Solid Oxide Fuel Cell Anode Operating Directly on Methane

    No full text
    6 Perillat-Merceroz, Cedric Gauthier, Gilles Roussel, Pascal Huve, Marielle Gelin, Patrick Vannier, Rose-NoelleThe possibility to introduce cerium in the perovskite-type titanate with formula La0.33Sr0.67TiO3+delta (LST) was investigated. Pure-phased La0.23Ce0.1Sr0.67TiO3+delta (LCST) was only obtained by synthesis at high temperature in reducing (diluted hydrogen) atmosphere. The material exhibits the same orthorhombic symmetry with Immm space group as LST and nearly the same cell volume. When exposed to oxidizing atmosphere at 1200 degrees C, Ti3+ and Ce3+ oxidation leads to the decomposition of LCST and the growth of several nanoscaled Ce-rich phases, as highlighted by backscattered electron microscopy. Shifting the gas back to a reducing atmosphere, but at lower temperature, only involves partial reversibility, ensuring the presence of nanoparticles of (electro)catalytically active phase within an electronically conducting n-type network. The catalytic tests in methane steam reforming at 900 degrees C (CH4/H2O = 10/1) show that the properties of the partially decomposed phase are greatly improved, what could make it a promising anode material for SOFC operating on slightly wet methane
    corecore