1,972 research outputs found

    Nutrient enrichment stimulates herbivory and alters epibiont assemblages at the edge but not inside subtidal macroalgal forests

    Get PDF
    AbstractNutrient enrichment is a major threat to subtidal macroalgal forests. Several studies have shown that nutrient inputs can enhance the ability of opportunistic algal species to acquire space freed by disturbance, at the expense of architecturally complex species that form forests. However, competition between canopy- and turf-forming macroalgae is not limited to the aftermath of disturbance. Canopy-forming macroalgae can provide suitable substratum for diverse epibiont assemblages, including both algae (epiphytes) and sessile invertebrates (epizoans). Despite evidence of enhanced epiphyte loading under eutrophic conditions, few experimental studies have assessed how nutrient enrichment influences the structure of epibiont assemblages on canopy-forming macroalgae at the edge versus inside forests. In oligotrophic waters of the NW Mediterranean, we experimentally tested the hypothesis that nutrient-driven proliferation of opportunistic epiphytic algae would affect the performance of the fucoid, Carpodesmia brachycarpa, and reduce the richness and abundance of the epizoan species they support. We predicted negative effects of nutrient enrichment to be greater at the edge than inside forests and on thalli that had recovered in cleared areas than on those within undisturbed canopy stands. Nutrient enrichment did not affect the photosynthetic efficiency and reproductive output of C. brachycarpa. By contrast, it enhanced herbivore consumption and decreased the cover and diversity of epizoans at forest edges, likely by stimulating the foraging activity of Arbacia lixula, the most abundant sea urchin in adjacent encrusting coralline barrens. Fertilization of areas inside forests had no effect on either C. brachycarpa or epibiont assemblages. Finally, nutrient enrichment effects did not vary between cleared and undisturbed areas. Our results show that moderate nutrient enrichment of oligotrophic waters does not necessarily cause the proliferation of epiphytes and, hence, a strengthening of their competitive effects on canopy-forming macroalgae. Nevertheless, enhanced herbivory damage to fertilized thalli at forest edges suggests that fragmentation could reduce the resilience of macroalgal forests and associated epibiont assemblages to nutrient enrichment

    Forest nurseries and the National Recovery and Resilience Plan: the case of Sicily and Apulia (Italy)

    Get PDF
    In Italy, the National Recovery and Resilience Plan (NRRP) foresees the planting of ca. 6.6 million trees to establish urban and peri-urban forests in 14 metropolitan cities. This ambitious project requires a significant number of native trees and shrubs, currently unavailable in Italian public and private nurseries. This survey analyzes the state of forest nurseries in two administrative regions of southern Italy, i.e. the “Filici” forest nursery (province of Agrigento, Sicily) and the Gargano Mountain Reclamation Consortium (province of Foggia, Apulia), to evaluate the adequacy of Sicilian and Apulian forest nurseries as potential sources of plant material to meet the requirements of the NRRP. The census carried out at the “Filici” nursery revealed the presence of more than 22,000 seedlings in cultivation, comprising 55 species, 26 genera, and 26 families. The autochthonous species are 43 (78.2%), while the exotic ones are 12 (21.8%). The Gargano Mountain Reclamation Consortium forest nursery has 190,876 seedlings in cultivation. A total of 80 species are present, belonging to 59 genera and 32 families. Of these, 68 (85%) are native species, 12 (15%) are exotic. An analysis of the plant material being cultivated in these forest nurseries shows the presence of a share of autochthonous species of interest for urban reforestation initiatives, however these are still insufficient in number

    A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy-barriers revealed by high-field Electron Spin Resonance spectroscopy

    Full text link
    The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field Electron Spin Resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). The exponential distribution of the energy-barriers for the rotational motion of the spin probe is unambigously evidenced at both 240K and 270K. The same shape for the distribution of the energy-barriers of PS was evidenced by the master curves provided by previous mechanical and light scattering studies. The breadth of the energy-barriers distribution of the spin probe is in the range of the estimates of the breadth of the PS energy-barriers distribution. The evidence that the deep structure of the energy landscape of PS exhibits the exponential shape of the energy-barriers distribution agrees with results from extreme-value statistics and the trap model by Bouchaud and coworkers.Comment: Final version in press as Letter to the Editor on J.Phys.:Condensed Matter. Changes in bol

    Folding and unfolding phylogenetic trees and networks

    Get PDF
    Phylogenetic networks are rooted, labelled directed acyclic graphs which are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network NN can be "unfolded" to obtain a MUL-tree U(N)U(N) and, conversely, a MUL-tree TT can in certain circumstances be "folded" to obtain a phylogenetic network F(T)F(T) that exhibits TT. In this paper, we study properties of the operations UU and FF in more detail. In particular, we introduce the class of stable networks, phylogenetic networks NN for which F(U(N))F(U(N)) is isomorphic to NN, characterise such networks, and show that they are related to the well-known class of tree-sibling networks.We also explore how the concept of displaying a tree in a network NN can be related to displaying the tree in the MUL-tree U(N)U(N). To do this, we develop a phylogenetic analogue of graph fibrations. This allows us to view U(N)U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N)U(N) and reconcilingphylogenetic trees with networks

    Fetal nutrition : a review

    Get PDF
    Knowledge of fetal nutrient supply has greatly increased in the last decade due to the availability of fetal blood samples obtained under relatively steady-state conditions. These studies, together with studies utilizing stable isotope methodologies, have clarified some aspects of the supply of the major nutrients for the fetus such as glucose, amino acids and fatty acids. At the same time, the relevance of intrauterine growth has been recognized not only for the well-being of the neonate and child, but also for later health in adulthood. The major determinants of fetal nutrient availability are maternal nutrition and metabolism together with placental function and metabolism. The regulation of the rate of intrauterine growth is the result of complex interactions between genetic inheritance, endocrine environment and availability of nutrients to the fetus

    High-field Electron Spin Resonance of Cu_{1-x}Zn_{x}GeO_{3}

    Full text link
    High-Field Electron Spin Resonance measurements were made on powder samples of Cu_{1-x}Zn_{x}GeO_{3} (x=0.00, 0.01, 0.02, 0.03 and 0.05) at different frequencies (95, 110, 190, 220, 330 and 440 GHz) at low temperatures. The spectra of the doped samples show resonances whose positions are dependent on Zn concentration, frequency and temperature. The analysis of intensity variation of these lines with temperature allows us to identify them as originating in transitions within states situated inside the Spin Peierls gap. A qualitative explanation of the details of the spectra is possible if we assume that these states in the gap are associated with "loose" spins created near the Zn impurities, as recently theoreticaly predicted. A new phenomenon of quenching of the ESR signal across the Dimerized to Incommensurate phase-boundary is observed.Comment: 4 pages, 5 ps figures in the text, submitted to Phys. Rev. Let
    • …
    corecore