35,796 research outputs found

    ESTIMATION OF SOIL EROSION TIME PATHS: THE VALUE OF SOIL MOISTURE AND TOPSOIL DEPTH INFORMATION

    Get PDF
    Rates of soil erosion in the dryland cropping region of Saskatchewan are investigated under alternative cropping strategies. Chemical fallow is examined as an alternative to tillage fallow for moisture and soil conservation. Conclusions include: (a) flexible cropping increases net discounted returns and substantially reduced soil erosion compared to the predominant crop rotation; (b) chemical fallow is a viable alternative to tillage fallow but only when topsoil already has been eroded substantially; and (c) an increase in the discount rate is soil conserving, since it causes producers to plant more often rather than fallow.Land Economics/Use,

    Arctic marine climate of the early nineteenth century

    Get PDF
    The climate of the early nineteenth century is likely to have been significantly cooler than that of today, as it was a period of low solar activity (the Dalton minimum) and followed a series of large volcanic eruptions. Proxy reconstructions of the temperature of the period do not agree well on the size of the temperature change, so other observational records from the period are particularly valuable. Weather observations have been extracted from the reports of the noted whaling captain William Scoresby Jr., and from the records of a series of Royal Navy expeditions to the Arctic, preserved in the UK National Archives. They demonstrate that marine climate in 1810 - 1825 was marked by consistently cold summers, with abundant sea-ice. But although the period was significantly colder than the modern average, there was considerable variability: in the Greenland Sea the summers following the Tambora eruption (1816 and 1817) were noticeably warmer, and had less sea-ice coverage, than the years immediately preceding them; and the sea-ice coverage in Lancaster Sound in 1819 and 1820 was low even by modern standards. © 2010 Author(s)

    Future impacts of fresh water resource management: sensitivity of coastal deltas

    Get PDF
    We present an assessment of contemporary and future effective sealevel rise (ESLR) using a sample of 40 deltas distributed worldwide. For any delta, ESLR is a net rate defined by eustatic sea-level rise, natural gross rates of fluvial sediment deposition and subsidence, and accelerated subsidence due to groundwater and hydrocarbon extraction. Present-day ESLR, estimated from geospatial data and a simple model of deltaic dynamics, ranges from 0.5 to 12.5 mm year-1. Reduced accretion of fluvial sediment from upstream siltation of reservoirs and freshwater consumptive irrigation losses are primary determinants of ESLR in nearly 70% of the deltas, while for only 12% eustatic sea-level rise predominates. Future scenarios indicate a much larger impact on deltas than previously estimated. Serious challenges to human occupancy of deltas worldwide are conveyed by upland watershed factors, which have been studied less comprehensively than the climate change and sea-level rise question

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure
    • …
    corecore