3,703 research outputs found

    Dynamical evolution of the Universe in the quark-hadron phase transition and possible nugget formation

    Get PDF
    We study the dynamics of first-order phase transition in the early Universe when it was 10−50ÎŒs10-50 \mu s old with quarks and gluons condensing into hadrons. We look at how the Universe evolved through the phase transition in small as well as large super cooling scenario, specifically exploring the formation of quark nuggets and their possible survival. The nucleation of the hadron phase introduces new distance scales in the Universe, which we estimate along with the hadron fraction, temperature, nucleation time etc. It is of interest to explore whether there is a relic signature of this transition in the form of quark nuggets which might be identified with the recently observed dark objects in our galactic halo and account for the Dark Matter in the Universe at present.Comment: LaTeX file with four postscript figure

    Preparation and characterisation of single phase (MoVW)<sub>5</sub>O<sub>14</sub>-type catalyst material

    Get PDF
    MoVW based materials are highly effective catalysts for partial oxidation reactions such as conversion of acrolein to acrylic acid. They offer a high selectivity, high yields and a good long term stability. Preceding work has identified the catalytically active phase of the MoVW catalyst and characterised it by Raman spectroscopy. The current work has been carried out to synthesise and characterise this active (MoVW)5O14 type structure

    Uniformly Accelerated Mirrors. Part 2: Quantum Correlations

    Get PDF
    We study the correlations between the particles emitted by a moving mirror. To this end, we first analyze , the two-point function of the stress tensor of the radiation field. In this we generalize the work undertaken by Carlitz and Willey. To further analyze how the vacuum correlations on I−I^- are scattered by the mirror and redistributed among the produced pairs of particles, we use a more powerful approach based on the value of TΌΜT_{\mu\nu} which is conditional to the detection of a given particle on I+I^+. We apply both methods to the fluxes emitted by a uniformly accelerated mirror. This case is particularly interesting because of its strong interferences which lead to a vanishing flux, and because of its divergences which are due to the infinite blue shift effects associated with the horizons. Using the conditional value of TΌΜT_{\mu\nu}, we reveal the existence of correlations between created particles and their partners in a domain where the mean fluxes and the two-point function vanish. This demonstrates that the scattering by an accelerated mirror leads to a steady conversion of vacuum fluctuations into pairs of quanta. Finally, we study the scattering by two uniformly accelerated mirrors which follow symmetrical trajectories (i.e. which possess the same horizons). When using the Davies-Fulling model, the Bogoliubov coefficients encoding pair creation vanish because of perfectly destructive interferences. When using regularized amplitudes, these interferences are inevitably lost thereby giving rise to pair creation.Comment: 30 pages, 9 postscript figure

    Thermonuclear Burning Regimes and the Use of SNe Ia in Cosmology

    Full text link
    The calculations of the light curves of thermonuclear supernovae are carried out by a method of multi-group radiation hydrodynamics. The effects of spectral lines and expansion opacity are taken into account. The predictions for UBVI fluxes are given. The values of rise time for B and V bands found in our calculations are in good agreement with the observed values. We explain why our results for the rise time have more solid physical justification than those obtained by other authors. It is shown that small variations in the chemical composition of the ejecta, produced in the explosions with different regimes of nuclear burning, can influence drastically the light curve decline in the B band and, to a lesser extent, in the V band. We argue that recent results on positive cosmological constant Lambda, found from the high redshift supernova observations, could be wrong in the case of possible variations of the preferred mode of nuclear burning in the earlier Universe.Comment: 20 pages, 5 figures, presented at the conference "Astronomy at the Eve of the New Century", Puschino, May 17-22, 1999. A few references and a table added, typos correcte

    Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms

    Full text link
    We investigate the dynamics of neutral atoms in a 2D optical lattice which traps two distinct internal states of the atoms in different columns. Two Raman lasers are used to coherently transfer atoms from one internal state to the other, thereby causing hopping between the different columns. By adjusting the laser parameters appropriately we can induce a non vanishing phase of particles moving along a closed path on the lattice. This phase is proportional to the enclosed area and we thus simulate a magnetic flux through the lattice. This setup is described by a Hamiltonian identical to the one for electrons on a lattice subject to a magnetic field and thus allows us to study this equivalent situation under very well defined controllable conditions. We consider the limiting case of huge magnetic fields -- which is not experimentally accessible for electrons in metals -- where a fractal band structure, the Hofstadter butterfly, characterizes the system.Comment: 6 pages, RevTe

    Rf-induced transport of Cooper pairs in superconducting single electron transistors in a dissipative environment

    Full text link
    We investigate low-temperature and low-voltage-bias charge transport in a superconducting Al single electron transistor in a dissipating environment, realized as on-chip high-ohmic Cr microstrips. In our samples with relatively large charging energy values Ec > EJ, where EJ is the energy of the Josephson coupling, two transport mechanisms were found to be dominating, both based on discrete tunneling of individual Cooper pairs: Depending on the gate voltage Vg, either sequential tunneling of pairs via the transistor island (in the open state of the transistor around the points Qg = CgVg = e mod(2e), where Cg is the gate capacitance) or their cotunneling through the transistor (for Qg away of these points) was found to prevail in the net current. As the open states of our transistors had been found to be unstable with respect to quasiparticle poisoning, high-frequency gate cycling (at f ~ 1 MHz) was applied to study the sequential tunneling mechanism. A simple model based on the master equation was found to be in a good agreement with the experimental data.Comment: 8 pages, 6 figure

    Discretized Diffusion Processes

    Get PDF
    We study the properties of the ``Rigid Laplacian'' operator, that is we consider solutions of the Laplacian equation in the presence of fixed truncation errors. The dynamics of convergence to the correct analytical solution displays the presence of a metastable set of numerical solutions, whose presence can be related to granularity. We provide some scaling analysis in order to determine the value of the exponents characterizing the process. We believe that this prototype model is also suitable to provide an explanation of the widespread presence of power-law in social and economic system where information and decision diffuse, with errors and delay from agent to agent.Comment: 4 pages 5 figure, to be published in PR
    • 

    corecore