15,556 research outputs found

    "Orphan" γ\gamma-ray Flares and Stationary Sheaths of Blazar Jets

    Full text link
    Blazars exhibit flares across the entire electromagnetic spectrum. Many γ\gamma-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These "orphan" γ\gamma-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. Macdonald et al. have developed the Ring of Fire model to explain the origin of orphan γ\gamma-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan γ\gamma-ray flare. This model was successfully applied to modeling a prominent orphan γ\gamma-ray flare observed in the blazar PKS 1510−-089. To further support the plausibility of this model, Macdonald et al. presented a stacked radio map of PKS 1510−-089 containing the polarimetric signature of a sheath of plasma surrounding the spine of the jet. In this paper, we extend our modeling and stacking techniques to a larger sample of blazars: 3C 273, 4C 71..01, 3C 279, 1055++018, CTA 102, and 3C 345, the majority of which have exhibited orphan γ\gamma-ray flares. We find that the model can successfully reproduce these flares, while our stacked maps reveal the existence of jet sheaths within these blazars.Comment: 19 pages, 27 figures, accepted for publication in ApJ. arXiv admin note: text overlap with arXiv:1505.0123

    Self-consistent simulations of a von K\'arm\'an type dynamo in a spherical domain with metallic walls

    Get PDF
    We have performed numerical simulations of boundary-driven dynamos using a three-dimensional non-linear magnetohydrodynamical model in a spherical shell geometry. A conducting fluid of magnetic Prandtl number Pm=0.01 is driven into motion by the counter-rotation of the two hemispheric walls. The resulting flow is of von K\'arm\'an type, consisting of a layer of zonal velocity close to the outer wall and a secondary meridional circulation. Above a certain forcing threshold, the mean flow is unstable to non-axisymmetric motions within an equatorial belt. For fixed forcing above this threshold, we have studied the dynamo properties of this flow. The presence of a conducting outer wall is essential to the existence of a dynamo at these parameters. We have therefore studied the effect of changing the material parameters of the wall (magnetic permeability, electrical conductivity, and thickness) on the dynamo. In common with previous studies, we find that dynamos are obtained only when either the conductivity or the permeability is sufficiently large. However, we find that the effect of these two parameters on the dynamo process are different and can even compete to the detriment of the dynamo. Our self-consistent approach allow us to analyze in detail the dynamo feedback loop. The dynamos we obtain are typically dominated by an axisymmetric toroidal magnetic field and an axial dipole component. We show that the ability of the outer shear layer to produce a strong toroidal field depends critically on the presence of a conducting outer wall, which shields the fluid from the vacuum outside. The generation of the axisymmetric poloidal field, on the other hand, occurs in the equatorial belt and does not depend on the wall properties.Comment: accepted for publication in Physical Review

    Temporal Evolution of Both Premotor and Motor Cortical Tuning Properties Reflect Changes in Limb Biomechanics

    Get PDF
    A prevailing theory in the cortical control of limb movement posits that premotor cortex initiates a high-level motor plan that is transformed by the primary motor cortex (MI) into a low-level motor command to be executed. This theory implies that the premotor cortex is shielded from the motor periphery and therefore its activity should not represent the low-level features of movement. Contrary to this theory, we show that both dorsal (PMd) and ventral premotor (PMv) cortices exhibit population-level tuning properties that reflect the biomechanical properties of the periphery similar to those observed in M1. We recorded single-unit activity from M1, PMd, and PMv and characterized their tuning properties while six rhesus macaques performed a reaching task in the horizontal plane. Each area exhibited a bimodal distribution of preferred directions during execution consistent with the known biomechanical anisotropies of the muscles and limb segments. Moreover, these distributions varied in orientation or shape from planning to execution. A network model shows that such population dynamics are linked to a change in biomechanics of the limb as the monkey begins to move, specifically to the state-dependent properties of muscles. We suggest that, like M1, neural populations in PMd and PMv are more directly linked with the motor periphery than previously thought

    The near and mid-infrared photometric properties of known redshift z ≥ 5 quasars

    Get PDF
    We assemble a catalogue of 488 spectroscopically confirmed very high (z≥5.00z\geq5.00) redshift quasars and report their near- (ZYJHKs/KZYJHK_{s}/K) and mid- (WISE W1234) infrared properties. 97\% of the VHzzQ sample is detected in one or more NIR (ZYJHK/KsZYJHK/K_{s}) band, with lack of coverage rather than lack of depth being the reason for the non-detections. 389 (80\%) of the very high redshift quasars are detected at 3.4μ\mum in the W1 band from the unWISE catalog and all of the z≥7z\geq7 quasars are detected in both unWISE W1 and W2. Using archival WFCAM/UKIRT and VIRCAM/VISTA data we check for photometric variability that might be expected from super-Eddington accretion. We find 28 of the quasars have sufficient NIR measurements and signal-to-noise ratio to look for variability. Weak variability was detected in multiple bands of SDSS J0959+0227, and very marginally in the YY-band of MMT J0215-0529. Only one quasar, SDSS J0349+0034, shows significant differences between WFCAM and VISTA magnitudes in one band. With supermassive black hole accretion likely to be redshift invariant up to very high-redshift, further monitoring of these sources is warranted. All the data, analysis codes and plots used and generated here can be found at: https://github.com/d80b2t/VHzQ}{\tt github.com/d80b2t/VHzQ.Comment: Published in MNRAS, 2020, Vol. 494, pp.789-803. 15 pages; 12 figures; 6 tables. Databases available at WFCAM Science Archive and the VISTA Science Archive. All data, analysis codes and plots can be found at github.com/d80b2t/VHzQ. Play the Five Tone

    The approach to a superconductor-to-Bose-insulator transition in disordered films

    Full text link
    Through a detailed study of scaling near the magnetic field-tuned superconductor-to-insulator transition in strongly disordered films, we find that results for a variety of materials can be collapsed onto a single phase diagram. The data display two clear branches, one with weak disorder and an intervening metallic phase, the other with strong disorder. Along the strongly disordered branch, the resistance at the critical point approaches RQ=h/4e2R_Q = h/4e^2 and the scaling of the resistance is consistent with quantum percolation, and therefore with the predictions of the dirty boson model.Comment: 4 pages, 4 figure

    Analyzing intramolecular vibrational energy redistribution via the overlap intensity-level velocity correlator

    Full text link
    Numerous experimental and theoretical studies have established that intramolecular vibrational energy redistribution (IVR) in isolated molecules has a heirarchical tier structure. The tier structure implies strong correlations between the energy level motions of a quantum system and its intensity-weighted spectrum. A measure, which explicitly accounts for this correaltion, was first introduced by one of us as a sensitive probe of phase space localization. It correlates eigenlevel velocities with the overlap intensities between the eigenstates and some localized state of interest. A semiclassical theory for the correlation is developed for systems that are classically integrable and complements earlier work focusing exclusively on the chaotic case. Application to a model two dimensional effective spectroscopic Hamiltonian shows that the correlation measure can provide information about the terms in the molecular Hamiltonian which play an important role in an energy range of interest and the character of the dynamics. Moreover, the correlation function is capable of highlighting relevant phase space structures including the local resonance features associated with a specific bright state. In addition to being ideally suited for multidimensional systems with a large density of states, the measure can also be used to gain insights into the phase space transport and localization. It is argued that the overlap intensity-level velocity correlation function provides a novel way of studying vibrational energy redistribution in isolated molecules. The correlation function is ideally suited to analyzing the parametric spectra of molecules in external fields.Comment: 16 pages, 13 figures (low resolution

    Agriculture, meteorology and water quality in Ireland: a regional evaluation of pressures and pathways of nutrient loss to water

    Get PDF
    peer-reviewedThe main environmental impact of Irish agriculture on surface and ground water quality is the potential transfer of nutrients to water. Soil water dynamics mediate the transport of nutrients to water, and these dynamics in turn depend on agro-meteorological conditions, which show large variations between regions, seasons and years. In this paper we quantify and map the spatio-temporal variability of agro-meteorological factors that control nutrient pressures and pathways of nutrient loss. Subsequently, we evaluate their impact on the water quality of Irish rivers. For nitrogen, pressure and pathways factors coincide in eastern and southern areas, which is reflected in higher nitrate levels of the rivers in these regions. For phosphorus, pathway factors are most pronounced in north-western parts of the country. In south-eastern parts, high pressure factors result in reduced biological water quality. These regional differences require that farm practices be customised to reflect the local risk of nutrient loss to water. Where pathways for phosphorus loss are present almost year-round—as is the case in most of the north-western part of the country—build-up of pressures should be prevented, or ameliorated where already high. In south-eastern areas, spatio-temporal coincidence of nutrient pressures and pathways should be prevented, which poses challenges to grassland management
    • …
    corecore