4,026 research outputs found

    Correlazioni tra le velocit\ue0 ultrasoniche e le caratteristiche petrografiche in ceramiche archeologiche: un primo approccio metodologico

    Get PDF
    L\u2019analisi delle velocit\ue0 degli ultrasuoni permette di investigare i caratteri tessiturali e strutturali e di individuare la presenza di eventuali difetti localizzati all\u2019interno del campione. La loro diffusione negli studi archeometrici \ue8 legata alla non distruttivit\ue0 e alla possibilit\ue0 di fornire risultati accurati in tempo reale. In questo lavoro sono state effettuate numerose analisi petrografiche in sezione sottile e misure di velocit\ue0 di propagazione degli ultrasuoni su reperti ceramici di interesse archeologico. In particolare sono stati selezionati ed analizzati ceramiche preistoriche ed anfore da trasporto del V-IV sec. a.C., caratterizzati da differente granulometria, composizione e struttura. Da questo primo approccio \ue8 stato possibile evidenziare che il parametro petrografico che influenza maggiormente la velocit\ue0 degli ultrasuoni \ue8 la forma e la disposizione spaziale dei pori, e la dimensione media degli inclusi, mentre correlazioni poco significative si ottengono prendendo in considerazione la percentuale e il tipo di inerte presente nell\u2019impasto ceramico

    Rationale, experimental data, and emerging clinical evidence on early and preventive use of levosimendan in patients with ventricular dysfunction

    Get PDF
    Acute ventricular dysfunction (AVD) is a complex condition with substantial morbidity and mortality, still featuring unique therapeutic challenges. Levosimendan is a calcium sensitizer and ATP-dependent potassium channel opener that was developed as an inodilating drug for the treatment of acute heart failure and cardiogenic shock. Differently from other more widely used inotropic agents, levosimendan has some exclusive characteristics, in terms of mechanisms of action, pharmacodynamic profile, and haemodynamic effects. This may have important clinical implications. In particular, in patients with AVD or in patients with pre-existing severe ventricular impairment undergoing planned myocardial stress, the administration of levosimendan before the onset of overt symptoms or before cardiovascular therapeutic procedures may have the potential to bridge the patient through the critical phase. In this review, we will focus on the rationale, the existing experimental data, and the emerging clinical experience supporting an early, even preventive use of levosimendan in severe ventricular dysfunction, beyond its recognized indications

    Hydrodynamic induced deformation and orientation of a microscopic elastic filament

    Get PDF
    We describe simulations of a microscopic elastic filament immersed in a fluid and subject to a uniform external force. Our method accounts for the hydrodynamic coupling between the flow generated by the filament and the friction force it experiences. While models that neglect this coupling predict a drift in a straight configuration, our findings are very different. Notably, a force with a component perpendicular to the filament axis induces bending and perpendicular alignment. Moreover, with increasing force we observe four shape regimes, ranging from slight distortion to a state of tumbling motion that lacks a steady state. We also identify the appearance of marginally stable structures. Both the instability of these shapes and the observed alignment can be explained by the combined action of induced bending and non-local hydrodynamic interactions. Most of these effects should be experimentally relevant for stiff micro-filaments, such as microtubules.Comment: three figures. To appear in Phys Rev Let

    Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: A critical systematic review

    Get PDF
    Background and purpose: Neuropathological studies can elucidate the mechanisms of nervous system damage associated with SARS-CoV-2 infection. Despite literature on this topic is rapidly expanding, correlations between neurological symptoms and brain pathology findings in COVID-19 patients remain largely unknown. Methods: We performed a systematic literature review on neuropathological studies in COVID-19, including 438 patients from 45 articles published by April 22, 2021. We retrieved quantitative data regarding demographic, clinical, and neuropathological findings. We carried out a Wilcoxon rank sum test or χ2 test to compare patients' subgroups based on different clinical and brain pathology features. Results: Neuropathological findings in COVID-19 patients were microgliosis (52.5%), astrogliosis (45.6%), inflammatory infiltrates (44.0%), hypoxic-ischemic lesions (40.8%), edema (25.3%), and hemorrhagic lesions (20.5%). SARS-CoV-2 RNA and proteins were identified in brain specimens of 41.9% and 28.3% of subjects, respectively. Detailed clinical information was available from 245 patients (55.9%), and among them, 96 subjects (39.2%) had presented with neurological symptoms in association with typical COVID-19 manifestations. We found that: (i) the detection rate of SARS-CoV-2 RNA and proteins in brain specimens did not differ between patients with versus those without neurological symptoms; (ii) brain edema, hypoxic-ischemic lesions, and inflammatory infiltrates were more frequent in subjects with neurological impairment; (iii) neurological symptoms were more common among older individuals. Conclusions: Our systematic revision of clinical correlates in COVID-19 highlights the pathogenic relevance of brain inflammatory reaction and hypoxic-ischemic damage rather than neuronal viral load. This analysis indicates that a more focused study design is needed, especially in the perspective of potential therapeutic trials

    On a Fast Solution Strategy for a Surface-Wire Integral Formulation of the Anisotropic Forward Problem in Electroencephalography

    Get PDF
    This work focuses on a quasi-linear-in-complexity strategy for a hybrid surface-wire integral equation solver for the electroencephalography forward problem. The scheme exploits a block diagonally dominant structure of the wire self block— that models the neuronal fibers self interactions—and of the surface self block—modeling interface potentials. This structure leads to two Neumann iteration schemes further accelerated with adaptive integral methods. The resulting algorithm is linear up to logarithmic factors. Numerical results confirm the performance of the method in biomedically relevant scenarios
    • …
    corecore