8,304 research outputs found
Avalanche photodiodes for the CMS electromagnetic calorimeter
Avalanche Photodiodes (APDs) will be used as photodetectors for the CMS crystal barrel calorimeter, made of lead tungstate (PWO) scintillating crystals. After two years of strong R&D effort a significant progress was achieved, in collaboration with manufacturers, in the relevant properties of the device for LHC applications. Quantum efficiency, noise contributions and radiation resistance measurements of APDs are presented
From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems
At a time when many companies are under pressure to reduce "times-to-market"
the management of product information from the early stages of design through
assembly to manufacture and production has become increasingly important.
Similarly in the construction of high energy physics devices the collection of
(often evolving) engineering data is central to the subsequent physics
analysis. Traditionally in industry design engineers have employed Engineering
Data Management Systems (also called Product Data Management Systems) to
coordinate and control access to documented versions of product designs.
However, these systems provide control only at the collaborative design level
and are seldom used beyond design. Workflow management systems, on the other
hand, are employed in industry to coordinate and support the more complex and
repeatable work processes of the production environment. Commercial workflow
products cannot support the highly dynamic activities found both in the design
stages of product development and in rapidly evolving workflow definitions. The
integration of Product Data Management with Workflow Management can provide
support for product development from initial CAD/CAM collaborative design
through to the support and optimisation of production workflow activities. This
paper investigates this integration and proposes a philosophy for the support
of product data throughout the full development and production lifecycle and
demonstrates its usefulness in the construction of CMS detectors.Comment: 18 pages, 13 figure
Performance of the PADME calorimeter prototype at the DANE BTF
The PADME experiment at the DANE Beam-Test Facility (BTF) aims at
searching for invisible decays of the dark photon by measuring the final state
missing mass in the process , with undetected. The
measurement requires the determination of the 4-momentum of the recoil photon,
performed using a homogeneous, highly segmented BGO crystals calorimeter. We
report the results of the test of a 55 crystals prototype performed
with an electron beam at the BTF in July 2016
Characterization and Performance of PADME's Cherenkov-Based Small-Angle Calorimeter
The PADME experiment, at the Laboratori Nazionali di Frascati (LNF), in
Italy, will search for invisible decays of the hypothetical dark photon via the
process , where the escapes detection. The
dark photon mass range sensitivity in a first phase will be 1 to 24 MeV. We
report here on measurement and simulation studies of the performance of the
Small-Angle Calorimeter, a component of PADME's detector dedicated to rejecting
2- and 3-gamma backgrounds. The crucial requirement is a timing resolution of
less than 200 ps, which is satisfied by the choice of PbF crystals and the
newly released Hamamatsu R13478UV photomultiplier tubes (PMTs). We find a
timing resolution of 81 ps (with double-peak separation resolution of 1.8 ns)
and a single-crystal energy resolution of 5.7%/ with light yield of
2.07 photo-electrons per MeV, using 100 to 400 MeV electrons at the Beam Test
Facility of LNF. We also propose the investigation of a two-PMT solution
coupled to a single PbF crystal for higher-energy applications, which has
potentially attractive features.Comment: 12 pages, 19 figures. v2: added section on radiation damage studie
Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests
A prototype for a sampling calorimeter made out of cerium fluoride crystals
interleaved with tungsten plates, and read out by wavelength-shifting fibres,
has been exposed to beams of electrons with energies between 20 and 150 GeV,
produced by the CERN Super Proton Synchrotron accelerator complex. The
performance of the prototype is presented and compared to that of a Geant4
simulation of the apparatus. Particular emphasis is given to the response
uniformity across the channel front face, and to the prototype's energy
resolution.Comment: 6 pages, 6 figures, Submitted to NIM
Response of microchannel plates to single particles and to electromagnetic showers
We report on the response of microchannel plates (MCPs) to single
relativistic particles and to electromagnetic showers. Particle detection by
means of secondary emission of electrons at the MCP surface has long been
proposed and is used extensively in ion time-of-flight mass spectrometers. What
has not been investigated in depth is their use to detect the ionizing
component of showers. The time resolution of MCPs exceeds anything that has
been previously used in calorimeters and, if exploited effectively, could aid
in the event reconstruction at high luminosity colliders. Several prototypes of
photodetectors with the amplification stage based on MCPs were exposed to
cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The
time resolution and the efficiency of the MCPs are measured as a function of
the particle multiplicity, and the results used to model the response to
high-energy showers.Comment: Paper submitted to NIM
Response of microchannel plates in ionization mode to single particles and electromagnetic showers
Hundreds of concurrent collisions per bunch crossing are expected at future
hadron colliders. Precision timing calorimetry has been advocated as a way to
mitigate the pileup effects and, thanks to their excellent time resolution,
microchannel plates (MCPs) are good candidate detectors for this goal. We
report on the response of MCPs, used as secondary emission detectors, to single
relativistic particles and to electromagnetic showers. Several prototypes, with
different geometries and characteristics, were exposed to particle beams at the
INFN-LNF Beam Test Facility and at CERN. Their time resolution and efficiency
are measured for single particles and as a function of the multiplicity of
particles. Efficiencies between 50% and 90% to single relativistic particles
are reached, and up to 100% in presence of a large number of particles. Time
resolutions between 20ps and 30ps are obtained.Comment: 20 pages, 9 figures. Paper submitted to NIM
Measurement of Exclusive rho^0 rho^0 Production in Two-Photon Collisions at High Q^2 at LEP
Exclusive rho rho production in two-photon collisions involving a single
highly virtual photon is studied with data collected at LEP at centre-of-mass
energies 89GeV < \sqrt{s} < 209GeV with a total integrated luminosity of
854.7pb^-1 The cross section of the process gamma gamma^* -> rho rho is
determined as a function of the photon virtuality, Q^2 and the two-photon
centre-of-mass energy, Wgg, in the kinematic region: 1.2GeV^2 < Q^2 < 30GeV^2
and 1.1GeV < Wgg < 3GeV
Search for Charginos with a Small Mass Difference with the Lightest Supersymmetric Particle at \sqrt{s} = 189 GeV
A search for charginos nearly mass-degenerate with the lightest
supersymmetric particle is performed using the 176 pb^-1 of data collected at
189 GeV in 1998 with the L3 detector. Mass differences between the chargino and
the lightest supersymmetric particle below 4 GeV are considered. The presence
of a high transverse momentum photon is required to single out the signal from
the photon-photon interaction background. No evidence for charginos is found
and upper limits on the cross section for chargino pair production are set. For
the first time, in the case of heavy scalar leptons, chargino mass limits are
obtained for any \tilde{\chi}^{+-}_1 - \tilde{\chi}^0_1 mass difference
Formation of the in Two-Photon Collisions at LEP
The two-photon width of the meson has been
measured with the L3 detector at LEP. The is studied in the decay
modes , KK, KK,
KK, , , and
using an integrated luminosity of 140 pb at GeV and
of 52 pb at GeV. The result is
(BR) keV. The dependence of the cross section is studied for
GeV. It is found to be better described by a Vector Meson
Dominance model form factor with a J-pole than with a -pole. In addition,
a signal of events is observed at the mass. Upper limits
for the two-photon widths of the , , and are also
given
- …
