2,653 research outputs found

    Seismic Halos Around Active Regions: An MHD Theory

    Full text link
    Comprehending the manner in which magnetic fields affect propagating waves is a first step toward constructing accurate helioseismic models of active region sub-surface structure and dynamics. Here, we present a numerical method to compute the linear interaction of waves with magnetic fields embedded in a solar-like stratified background. The ideal Magneto-Hydrodynamic (MHD) equations are solved in a 3-dimensional box that straddles the solar photosphere, extending from 35 Mm within to 1.2 Mm into the atmosphere. One of the challenges in performing these simulations involves generating a Magneto-Hydro-Static (MHS) state wherein the stratification assumes horizontal inhomogeneity in addition to the strong vertical stratification associated with the near-surface layers. Keeping in mind that the aim of this effort is to understand and characterize linear MHD interactions, we discuss a means of computing statically consistent background states. Power maps computed from simulations of waves interacting with thick flux tubes of peak photospheric field strengths 600 G and 3000 G are presented. Strong modal power reduction in the `umbral' regions of the flux tube enveloped by a halo of increased wave power are seen in the simulations with the thick flux tubes. These enhancements are also seen in Doppler velocity power maps of active regions observed in the Sun, leading us to propose that the halo has MHD underpinnings.Comment: submitted to Ap

    Sub-Zero Alteration in an Isotopically Heavy Brine Preserved in a Pristine H Chondrite Xenolith

    Get PDF
    Introduction: Brecciated H chondrites host a variety of xenoliths, including unshocked, phyllo- silicate-rich carbonaceous chondrites (CCs). The brecciated H chondrite Zag (H3-6) is one of two chondrites to host macroscopic (1 - 5mm), xenolithic crystals of halite (NaCl) with aqueous fluid inclusions and organics. A ~1cm CC xenolith in Zag (Zag clast) has mineralogy similar to CI chondrites, but it has a unique bulk oxygen isotopic composition among all meteorites ((exp 17)O = 1.49 0.04 , (exp 18)O = 22.38 0.17 ). The Zag clast encloses halite in its matrix, linking the coarse, matrix halite and the xenolith to the same parent object, suggested to be hydrovolcanically active. Its bulk C and N contents are the highest among chondrites and bulk (exp 15)N is similar to CR chondrites and Bells. Insoluble organic material (IOM) in the Zag clast has D and (exp 15)N hotspots, also similar to CR chondrites and Bells (C2-ung.). We provide further isotopic characterization of the Zag clast to constrain the formation temperature and origin of its primary and secondary components

    Star Formation Histories of Nearby Elliptical Galaxies. II. Merger Remnant Sample

    Get PDF
    This work presents high S/NS/N spectroscopic observations of a sample of six suspected merger remnants, selected primarily on the basis of H{\sc i} tidal debris detections. Single stellar population analysis of these galaxies indicates that their ages, metallicities, and α\alpha-enhancement ratios are consistent with those of a representative sample of nearby elliptical galaxies. The expected stellar population of a recent merger remnant, young age combined with low [α\alpha/Fe], is not seen in any H{\sc i}-selected galaxy. However, one galaxy (NGC~2534), is found to deviate from the ZZ-plane in the sense expected for a merger remnant. Another galaxy (NGC~7332), selected by other criteria, best matches the merger remnant expectations.Comment: 12 pages, 10 figures, accepted by A

    Baryonically Closed Galaxy Groups

    Get PDF
    Elliptical galaxies and their groups having the largest L_x/L_B lie close to the locus in the L_x,L_B diagram expected for closed systems with baryon fractions equal to the cosmic mean value, f_b = 0.16. The estimated baryon fractions for several of these galaxies/groups are also close to 0.16 when the gas density is extrapolated to the virial radius. Evidently they are the least massive baryonically closed systems. Gas retention in these groups implies that non-gravitational heating cannot exceed about 1 keV per particle, consistent with the heating required to produce the deviation of groups from the L_x - T correlation for more massive clusters. Isolated galaxies/groups with X-ray luminosities significantly lower than baryonically closed groups may have undermassive dark halos, overactive central AGNs, or higher star formation efficiencies. The virial mass and hot gas temperatures of nearly or completely closed groups correlate with the group X-ray luminosities and the optical luminosities of the group-centered elliptical galaxy, an expected consequence of their merging history. The ratio of halo mass to the mass of the central galaxy for X-ray luminous galaxy/groups is about 80.Comment: 7 pages; Accepted by ApJ Letter

    Damped Lyman alpha Absorbing Galaxies At Low Redshifts z<1 From Hierarchical Galaxy Formation Models

    Full text link
    We investigate Damped Ly-alpha absorbing galaxies (DLA galaxies) at low redshifts z<1 in the hierarchical structure formation scenario to clarify the nature of DLA galaxies because observational data of such galaxies mainly at low redshifts are currently available. We find that our model well reproduces distributions of fundamental properties of DLA galaxies such as luminosities, column densities, impact parameters obtained by optical and near-infrared imagings. Our results suggest that DLA systems primarily consist of low luminosity galaxies with small impact parameters (typical radius about 3 kpc, surface brightness from 22 to 27 mag arcsec^{-2}) similar to low surface brightness (LSB) galaxies. In addition, we investigate selection biases arising from the faintness and from the masking effect which prevents us from identifying a DLA galaxy hidden or contaminated by a point spread function of a background quasar. We find that the latter affects the distributions of DLA properties more seriously rather than the former, and that the observational data are well reproduced only when taking into account the masking effect. The missing rate of DLA galaxies by the masking effect attains 60-90 % in the sample at redshift 0<z<1 when an angular size limit is as small as 1 arcsec. Furthermore we find a tight correlation between HI mass and cross section of DLA galaxies, and also find that HI-rich galaxies with M(HI) \sim 10^{9} M_sun dominate DLA systems. These features are entirely consistent with those from the Arecibo Dual-Beam Survey which is a blind 21 cm survey. Finally we discuss star formation rates, and find that they are typically about 10^{-2} M_sun yr^{-1} as low as those in LSB galaxies.Comment: 21 pages, 13 figures, Accepted for publication in Astrophsical Journa

    Gravitational Waves from Supermassive Black Hole Coalescence in a Hierarchical Galaxy Formation Model

    Full text link
    We investigate the expected gravitational wave emission from coalescing supermassive black hole (SMBH) binaries resulting from mergers of their host galaxies. When galaxies merge, the SMBHs in the host galaxies sink to the center of the new merged galaxy and form a binary system. We employ a semi-analytic model of galaxy and quasar formation based on the hierarchical clustering scenario to estimate the amplitude of the expected stochastic gravitational wave background owing to inspiraling SMBH binaries and bursts owing to the SMBH binary coalescence events. We find that the characteristic strain amplitude of the background radiation is hc(f)∼10−16(f/1μHz)−2/3h_c(f) \sim 10^{-16} (f/1 \mu {\rm Hz})^{-2/3} for f≲1μHzf \lesssim 1 \mu {\rm Hz} just below the detection limit from measurements of the pulsar timing provided that SMBHs coalesce simultaneously when host galaxies merge. The main contribution to the total strain amplitude of the background radiation comes from SMBH coalescence events at 0<z<10<z<1. We also find that a future space-based gravitational wave interferometer such as the planned \textit{Laser Interferometer Space Antenna} ({\sl LISA}) might detect intense gravitational wave bursts associated with coalescence of SMBH binaries with total mass Mtot<107M⊙M_{\rm tot} < 10^7 M_{\odot} at z≳2z \gtrsim 2 at a rate ∼1.0yr−1 \sim 1.0 {\rm yr}^{-1}. Our model predicts that burst signals with a larger amplitude hburst∼10−15h_{\rm burst} \sim 10^{-15} correspond to coalescence events of massive SMBH binary with total mass Mtot∼108M⊙M_{\rm tot} \sim 10^8 M_{\odot} at low redshift z≲1 z \lesssim 1 at a rate ∼0.1yr−1 \sim 0.1 {\rm yr}^{-1} whereas those with a smaller amplitude hburst∼10−17h_{\rm burst} \sim 10^{-17} correspond to coalescence events of less massive SMBH binary with total mass Mtot∼106M⊙M_{\rm tot} \sim 10^6 M_{\odot} at high redshift z≳3 z \gtrsim 3.Comment: Accepted for publication in ApJ. 11 pages, 7 figure

    Forsterite-Bearing Type B CAI with a Relict Eringaite-Bearing Ultra-Refractory CAI

    Get PDF
    Forsterite-bearing Type B (FoB) Ca,Al-rich inclusions (CAIs) are a rare type of coarse-grained igneous CAIs found almost exclusively in CV3 chondrites [1–5]. Here we describe the mineralogy, petrography, and oxygen-isotope compositions of a FoB CAI Al-2 from Allende containing a relict eringaite-bearing ultra-refractory (UR) inclusion. Eringaite is a Sc-rich garnet [Ca_3(Sc,Y,Ti)_2Si_3O_(12)] that has been recently identified in a cluster of UR inclusion fragments within an amoeboid olivine aggregate in Vigarano [6]

    On the Similarity between Cluster and Galactic Stellar Initial Mass Functions

    Full text link
    The stellar initial mass functions (IMFs) for the Galactic bulge, the Milky Way, other galaxies, clusters of galaxies, and the integrated stars in the Universe are composites from countless individual IMFs in star clusters and associations where stars form. These galaxy-scale IMFs, reviewed in detail here, are not steeper than the cluster IMFs except in rare cases. This is true even though low mass clusters generally outnumber high mass clusters and the average maximum stellar mass in a cluster scales with the cluster mass. The implication is that the mass distribution function for clusters and associations is a power law with a slope of -2 or shallower. Steeper slopes, even by a few tenths, upset the observed equality between large and small scale IMFs. Such a cluster function is expected from the hierarchical nature of star formation, which also provides independent evidence for the IMF equality when it is applied on sub-cluster scales. We explain these results with analytical expressions and Monte Carlo simulations. Star clusters appear to be the relaxed inner parts of a widespread hierarchy of star formation and cloud structure. They are defined by their own dynamics rather than pre-existing cloud boundaries.Comment: 22 pages, 2 figures, ApJ, 648, in press, September 1, 200
    • …
    corecore