193 research outputs found

    Characterizing Cosmic-Ray Propagation in Massive Star-forming Regions: The Case of 30 Doradus and the Large Magellanic Cloud

    Get PDF
    Using infrared, radio, and γ-ray data, we investigate the propagation characteristics of cosmic-ray (CR) electrons and nuclei in the 30 Doradus (30 Dor) star-forming region in the Large Magellanic Cloud (LMC) using a phenomenological model based on the radio-far-infrared correlation within galaxies. Employing a correlation analysis, we derive an average propagation length of ~100-140 pc for ~3 GeV CR electrons resident in 30 Dor from consideration of the radio and infrared data. Assuming that the observed γ-ray emission toward 30 Dor is associated with the star-forming region, and applying the same methodology to the infrared and γ-ray data, we estimate a ~20 GeV propagation length of 200-320 pc for the CR nuclei. This is approximately twice as large as for ~3 GeV CR electrons, corresponding to a spatial diffusion coefficient that is ~4 times higher, scaling as (R/GV)δ with δ ≈ 0.7-0.8 depending on the smearing kernel used in the correlation analysis. This value is in agreement with the results found by extending the correlation analysis to include ~70 GeV CR nuclei traced by the 3-10 GeV γ-ray data (δ ≈ 0.66 ± 0.23). Using the mean age of the stellar populations in 30 Dor and the results from our correlation analysis, we estimate a diffusion coefficient D_R ≈ (0.9-1.0) × 10^(27)(R/GV)0.7 cm^(2) s^(–1). We compare the values of the CR electron propagation length and surface brightness for 30 Dor and the LMC as a whole with those of entire disk galaxies. We find that the trend of decreasing average CR propagation distance with increasing disk-averaged star formation activity holds for the LMC, and extends down to single star-forming regions, at least for the case of 30 Dor

    Variation in amino acid and lipid composition of latent fingerprints

    Get PDF
    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of ‘real’ latent fingerprints collected on a non-porous surface was analysed by gas chromatography–mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9- octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting ‘groomed’ fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the ‘natural’ and ‘groomed’ fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints

    Do herbivorous minnows have “plug-flow reactor” guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations

    Get PDF
    Few investigations have empirically analyzed fish gut function in the context of chemical reactor models. In this study, digestive enzyme activities, levels of gastrointestinal fermentation products [short chain fatty acids (SCFA)], luminal nutrient concentrations, and the mass of gut contents were measured along the digestive tract in herbivorous and carnivorous minnows to ascertain whether their guts function as “plug-flow reactors” (PFRs). Four of the species, Campostoma anomalum, C. ornatum, C. oligolepis, and C. pauciradii, are members of a monophyletic herbivorous clade, whereas the fifth species, Nocomis micropogon, is a carnivore from an adjacent carnivorous clade. In the context of a PFR model, the activities of amylase, trypsin and lipase, and the concentrations of glucose, protein, and lipid were predicted to decrease moving from the proximal to the distal intestine. I found support for this as these enzyme activities and nutrient concentrations generally decreased moving distally along the intestine of the four Campostoma species. Furthermore, gut content mass and the low SCFA concentrations did not change (increase or decrease) along the gut of any species. Combined with a previous investigation suggesting that species of Campostoma have rapid gut throughput rates, the data presented here generally support Campostoma as having guts that function as PFRs. The carnivorous N. micropogon showed some differences in the measured parameters, which were interpreted in the contexts of intake and retention time to suggest that PFR function breaks down in this carnivorous species
    corecore