8 research outputs found

    Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening

    No full text
    Peach (Prunus persica) fruits from different varieties display differential organoleptic and nutritional properties, characteristics related to their chemical composition. Here, chemical biodiversity of peach fruits from fifteen varieties, at harvest and after post-harvest ripening, was explored by gas chromatography–mass spectrometry. Metabolic profiling revealed that metabolites involved in organoleptic properties (sugars, organic and amino acids), stress tolerance (raffinose, galactinol, maltitol), and with nutritional properties (amino, caffeoylquinic and dehydroascorbic acids) displayed variety-dependent levels. Peach varieties clustered into four groups: two groups of early-harvest varieties with higher amino acid levels; two groups of mid- and late-harvest varieties with higher maltose levels. Further separation was mostly dependent on organic acids/raffinose levels. Variety-dependent and independent metabolic changes associated with ripening were detected; which contribute to chemical diversity or can be used as ripening markers, respectively. The great variety-dependent diversity in the content of metabolites that define fruit quality reinforces metabolomics usage as a tool to assist fruit quality improvement in peach.EEA San PedroFil: Monti, Laura Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Bustamante, Claudia Anabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Osorio, Sonia. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Gabilondo, Julieta. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Borsani, Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Lauxmann, Martin Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Maulión, Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Valentini, Gabriel Hugo. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Budde, Claudio Olaf. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria San Pedro; ArgentinaFil: Fernie, Alisdair. Institut Max Planck Fur Molekulare Physiologie; AlemaniaFil: Lara, Maria Valeria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Drincovich, Maria Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro de Estudios Fotosintéticos y Bioquímicos; Argentin

    Small footprint phase locking system for large tiled aperture laser array

    No full text
    International audienceA phase sensing system fitted to the control of coherent laser beam array of large cross section is experimented. It is based on the use of a fiber bundle that collects a weak part of the synthetic wavefront, that scales it down (1/40) and that reshapes it in a more compact arrangement (2D to 1D array). Then, the reconfigured beam array can be analyzed by a small footprint system making the large laser beam array easier to phase-lock. The discrete laser array wavefront transmitted by the meter long fiber bundle was stabilized thanks to a multiple arm servo loop. Laser array phase locking was further ensured by random scattering through a diffuser, associated to an alternating projection algorithm. Six fiber laser beams constituting a 110 mm diameter synthetic aperture, were phase-locked with lambda/16 accuracy

    Pellet photonic innovant gas sensor using catalysis and integrated photonics

    No full text
    International audienceThis article addresses the main results of the PEPS (PEllet Photonic Sensor) project, whcich aims at developing a new gas sensing transducer via a technological breakthrough: the combination of photonics (insensitive to external electromagnetic disturbances) and catalysis (reversibility, limited energy consumption). Indeed, catalytic reactions are often exothermic and this heat can modify the properties of optical devices. The experimental studies performed during the PEPS project highlighted the rapid and reversible response at room temperature of catalytic powders towards different concentrations of H2 in air. The thermal and optical properties of the materials used for the integrated photonic component have also been studied. These results have been exploited for the design of the photonic transducers. The feasibility of the physical transduction principle has been demonstrated by developing different prototypes based on Bragg gratings and Multimode Interference Components

    Impact of the new heart allocation policy on patients with restrictive, hypertrophic, or congenital cardiomyopathies.

    No full text
    BackgroundPatients with restrictive or hypertrophic cardiomyopathy (RCM/HCM) and congenital heart disease (CHD) do not derive clinical benefit from inotropes and mechanical circulatory support. Concerns were expressed that the new heart allocation system implemented in October 2018 would disadvantage these patients. This paper aimed to examine the impact of the new adult heart allocation system on transplantation and outcomes among patients with RCM/HCM/CHD.MethodsWe identified adult patients with RCM/HCM/CHD in the United Network for Organ Sharing (UNOS) database who were listed for or received a cardiac transplant from April 2017-June 2020. The cohort was separated into those listed before and after allocation system changes. Demographics and recipient characteristics, donor characteristics, waitlist survival, and post-transplantation outcomes were analyzed.ResultsThe number of patients listed for RCM/HCM/CHD increased after the allocation system change from 429 to 517. Prior to the change, the majority RCM/HCM/CHD patients were Status 1A at time of transplantation; afterwards, most were Status 2. Wait times decreased significantly for all: RCM (41 days vs 27 days; PConclusionsThe new allocation system has had a positive impact on time to transplantation of patients with RCM, HCM, and CHD without negatively influencing survival
    corecore