21 research outputs found

    Gas-phase conformations of cationized poly(styrene) oligomers

    No full text
    AbstractThe gas-phase conformations of poly(styrene) oligomers cationized by Li+, Na+, Cu+, and Ag+ (M+PSn) were examined using ion mobility experiments and molecular mechanics/dynamics calculations. M+PSn ions were formed by MALDI and their ion-He collision cross-sections were measured by ion mobility methods. The experimental collision cross-sections of each M+PS n-mer were similar for all four metal cations and increased linearly with n. Molecular modeling of selected M+PS oligomers cationized by Li+ and Na+ yielded quasi-linear structures with the metal cation sandwiched between two phenyl groups. The relative energies of the structures were ∼2–3 kcal/mol more stable when the metal cation was sandwiched near the middle of the oligomer chain than when it was near the ends of the oligomer. The cross-sections of these theoretical structures agree well with the experimental values with deviations typically around 1–2%. The calculations also show that the metal cation tends to align the phenyl groups on the same side of the CH2CH backbone. Calculations on neutral poly(styrene), on the other hand, showed structures in which the phenyl groups were more randomly positioned about the oligomer backbone. The conformations and metal-oligomer binding energies of M+PS are also used to help explain CID product distributions and fragmentation mechanisms of cationized PS oligomers

    Familial Alzheimer’s Disease Mutations Differentially Alter Amyloid β-Protein Oligomerization

    No full text
    [Image: see text] Although most cases of Alzheimer’s disease (AD) are sporadic, ∼5% of cases are genetic in origin. These cases, known as familial Alzheimer’s disease (FAD), are caused by mutations that alter the rate of production or the primary structure of the amyloid β-protein (Aβ). Changes in the primary structure of Aβ alter the peptide’s assembly and toxic activity. Recently, a primary working hypothesis for AD has evolved where causation has been attributed to early, soluble peptide oligomer states. Here we posit that both experimental and pathological differences between FAD-related mutants and wild-type Aβ could be reflected in the early oligomer distributions of these peptides. We use ion mobility-based mass spectrometry to probe the structure and early aggregation states of three mutant forms of Aβ40 and Aβ42: Tottori (D7N), Flemish (A21G), and Arctic (E22G). Our results indicate that the FAD-related amino acid substitutions have no noticeable effect on Aβ monomer cross section, indicating there are no major structural changes in the monomers. However, we observe significant changes to the aggregation states populated by the various Aβ mutants, indicating that structural changes present in the monomers are reflected in the oligomers. Moreover, the early oligomer distributions differ for each mutant, suggesting a possible structural basis for the varied pathogenesis of different forms of FAD

    Combined Elemental and Biomolecular Mass Spectrometry Imaging for Probing the Inventory of Tissue at a Micrometer Scale

    No full text
    Several complementary mass spectrometric imaging techniques allow mapping of various analytes within biological tissue sections. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) quantitatively detects elements and isotopes with very high sensitivity and a particularly high dynamical range. Matrix-assisted laser desorption/ionization ion mobility mass spectrometry (MALDI-IM-MS) allows a pixel-by-pixel classification and identification of biomolecules. In order to dispose of the healthy hemisphere as an internal calibrant in addition to routinely used external standards, adjacent brain sections of mice with a unilateral 6-OHDA lesion of the medial forebrain bundle were chosen as exemplary samples. We demonstrate a comprehensive way of data acquisition and analysis by coregistering mass spectrometric data on photomicrographs as common reference space and thus providing trimodal spatial information. Registering subsequent planar element maps yielded continuous 3-dimensional data sets. Furthermore, we introduce a correction of MSI data for variable slice thickness applicable to all MSI techniques. In the present case, we observed increased concentrations of iron, manganese, and copper in the lesioned substantia nigra while monounsaturated lipid levels were decreased in the identical region of interest. Our techniques provide new insights into the intricate spatial relationship of morphology and chemistry within tissue

    Ion mobility-mass spectrometry analysis of large protein complexes.

    No full text
    Here we describe a detailed protocol for both data collection and interpretation with respect to ion mobility-mass spectrometry analysis of large protein assemblies. Ion mobility is a technique that can separate gaseous ions based on their size and shape. Specifically, within this protocol, we cover general approaches to data interpretation, methods of predicting whether specific model structures for a given protein assembly can be separated by ion mobility, and generalized strategies for data normalization and modeling. The protocol also covers basic instrument settings and best practices for both observation and detection of large noncovalent protein complexes by ion mobility-mass spectrometry
    corecore