2,502 research outputs found

    Quantum Monte Carlo calculations of neutron-alpha scattering

    Get PDF
    We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Neutron Drops and Skyrme Energy-Density Functionals

    Full text link
    The Jπ^{\pi}=0+^+ ground state of a drop of 8 neutrons and the lowest 1/2^- and 3/2^- states of 7-neutron drops, all in an external well, are computed accurately with variational and Green's function Monte Carlo methods for a Hamiltonian containing the Argonne v18v_{18} two-nucleon and Urbana IX three-nucleon potentials. These states are also calculated using Skyrme-type energy-density functionals. Commonly used functionals overestimate the central density of these drops and the spin-orbit splitting of 7-neutron drops. Improvements in the functionals are suggested

    Field-induced segregation of ferromagnetic nano-domains in Pr0.5_{0.5}Sr0.5_{0.5}MnO3_3, detected by 55^{55}Mn NMR

    Full text link
    The antiferromagnetic manganite Pr0.5_{0.5}Sr0.5_{0.5}MnO3_3 was investigated at low temperature by means of magnetometry and 55^{55}Mn NMR. A field-induced transition to a ferromagnetic state is detected by magnetization measurements at a threshold field of a few tesla. NMR shows that the ferromagnetic phase develops from zero field by the nucleation of microscopic ferromagnetic domains, consisting of an inhomogeneous mixture of tilted and fully aligned parts. At the threshold the NMR spectrum changes discontinuously into that of a homogeneous, fully aligned, ferromagnetic state, suggesting a percolative origin for the ferromagnetic transition.Comment: Latex 2.09 language. 4 pages, 3 figures, 23 references. Submitted to physical Review

    A Comparison of Nursing Homes in Rural and Urban Communities in Indiana

    Get PDF
    The growing number of elderly persons in U.S. society—the “Graying of America”—increases the urgency of making available the resources needed to ensure optimum quality of life for all seniors. When families are no longer able to meet their loved one’s needs, it becomes necessary to consider the possibility of long-term care. Often, families face this decision without the information they need in order to make an informed choice. The researchers utilized a four-tiered categorization to compare nursing homes in most rural, rural, urban and most urban counties in Indiana. The Medicare website (http://www.medicare.gov/) addresses issues of staffing, number of Medicare/Medicaid beds, and quality ratings. The authors discussed implications for elderly residents of rural counties in Indiana and encouraged further research to determine the extent to which their findings may be generalized to the continental U.S

    Time-Dependent Current Partition in Mesoscopic Conductors

    Full text link
    The currents at the terminals of a mesoscopic conductor are evaluated in the presence of slowly oscillating potentials applied to the contacts of the sample. The need to find a charge and current conserving solution to this dynamic current partition problem is emphasized. We present results for the electro-chemical admittance describing the long range Coulomb interaction in a Hartree approach. For multiply connected samples we discuss the symmetry of the admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971

    Ab initio calculation of the Hoyle state and a new look at clustering in nuclei

    Full text link
    I present an ab initio calculation of the spectrum of carbon-12, including also the famous Hoyle state. Its structure is discussed and a new interpretation of clustering in nuclear physics is given.Comment: Plenary talk, The Rutherford Centennial Conference on Nuclear Physics, Manchester, August 8-12, 201

    Selecting and implementing overview methods: implications from five exemplar overviews

    Get PDF
    This is the final version of the article. Available from BioMed Central via the DOI in this record.Background Overviews of systematic reviews are an increasingly popular method of evidence synthesis; there is a lack of clear guidance for completing overviews and a number of methodological challenges. At the UK Cochrane Symposium 2016, methodological challenges of five overviews were explored. Using data from these five overviews, practical implications to support methodological decision making of authors writing protocols for future overviews are proposed. Methods Methods, and their justification, from the five exemplar overviews were tabulated and compared with areas of debate identified within current literature. Key methodological challenges and implications for development of overview protocols were generated and synthesised into a list, discussed and refined until there was consensus. Results Methodological features of three Cochrane overviews, one overview of diagnostic test accuracy and one mixed methods overview have been summarised. Methods of selection of reviews and data extraction were similar. Either the AMSTAR or ROBIS tool was used to assess quality of included reviews. The GRADE approach was most commonly used to assess quality of evidence within the reviews. Eight key methodological challenges were identified from the exemplar overviews. There was good agreement between our findings and emerging areas of debate within a recent published synthesis. Implications for development of protocols for future overviews were identified. Conclusions Overviews are a relatively new methodological innovation, and there are currently substantial variations in the methodological approaches used within different overviews. There are considerable methodological challenges for which optimal solutions are not necessarily yet known. Lessons learnt from five exemplar overviews highlight a number of methodological decisions which may be beneficial to consider during the development of an overview protocol.The overview conducted by Pollock [19] was supported by a project grant from the Chief Scientist Office of the Scottish Government. The overview conducted by McClurg [21] was supported by a project grant by the Physiotherapy Research Foundation. The overview by Hunt [22] was supported as part of doctoral programme funding by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (PenCLAHRC). The overview conducted by Estcourt [20] was supported by an NIHR Cochrane Programme Grant for the Safe and Appropriate Use of Blood Components. The overview conducted by Brunton [23] was commissioned by the Department of Health as part of an ongoing programme of work on health policy research synthesis. Alex Pollock is employed by the Nursing, Midwifery and Allied Health Professions (NMAHP) Research Unit, which is supported by the Chief Scientist Office of the Scottish Government. Pauline Campbell is supported by the Chief Nurses Office of the Scottish Government

    Many-body effects in 16O(e,e'p)

    Get PDF
    Effects of nucleon-nucleon correlations on exclusive (e,ep)(e,e'p) reactions on closed-shell nuclei leading to single-hole states are studied using 16O(e,ep)15N^{16}O(e,e'p)^{15}N (6.326.32 MeV, 3/23/2^-) as an example. The quasi-hole wave function, calculated from the overlap of translationally invariant many-body variational wave functions containing realistic spatial, spin and isospin correlations, seems to describe the initial state of the struck proton accurately inside the nucleus, however it is too large at the surface. The effect of short-range correlations on the final state is found to be largely cancelled by the increase in the transparency for the struck proton. It is estimated that the values of the spectroscopic factors obtained with the DWIA may increase by a few percent due to correlation effects in the final state.Comment: 21 Pages, PHY-7849-TH-9

    Quantum Monte Carlo calculations of spectroscopic overlaps in A7A \leq 7 nuclei

    Full text link
    We present Green's function Monte Carlo calculations of spectroscopic overlaps for A7A \leq 7 nuclei. The realistic Argonne v18 two-nucleon and Illinois-7 three-nucleon interactions are used to generate the nuclear states. The overlap matrix elements are extrapolated from mixed estimates between variational Monte Carlo and Green's function Monte Carlo wave functions. The overlap functions are used to obtain spectroscopic factors and asymptotic normalization coefficients, and they can serve as an input for low-energy reaction calculations
    corecore