12,301 research outputs found
Diffusion or War? Foucault as a Reader of Tarde
The objective of this chapter is to clarify the social theory underlying in Foucault’s
genealogy of power/knowledge thanks to a comparison with Tarde’s microsociology.
Nietzsche is often identified as the direct (and unique) predecessor of this genealogy, and
the habitual criticisms are worried about the intricate relations between Foucault and Marx.
These perspectives omit to point to another – and more direct – antecedent of Foucault`s
microphysics: the microsociology of Gabriel Tarde. Bio-power technologies must be read
as Tardian inventions that, by propagation, have reconfigured pre-existing social spaces,
building modern societies. We will see how the Tardean source in Foucault’s genealogy
sheds new clarity about the micro-socio-logic involved in it, enabling us to identify some of
its aporiae and to imagine some solutions in this respect as well
On the shot-noise limit of a thermal current
The noise power spectral density of a thermal current between two macroscopic
dielectric bodies held at different temperatures and connected only at a
quantum point contact is calculated. Assuming the thermal energy is carried
only by phonons, we model the quantum point contact as a mechanical link,
having a harmonic spring potential. In the weak coupling, or weak-link limit,
we find the thermal current analog of the well-known electronic shot-noise
expression.Comment: 4 pages, 1 figur
Ozone exchange within and above an irrigated Californian orchard
In this study, the canopy effects on the vertical ozone exchange within and above Californian orchard are investigated. We examined the comprehensive dataset obtained from the Canopy Horizontal Array Turbulence Study (CHATS). CHATS typifies a rural central Californian site, with O3 mixing ratios of less than 60 ppb and moderate NOx mixing ratios. The CHATS campaign covered a complete irrigation cycle, with our analysis including periods before and after irrigation. Lower O3 mixing ratios were found following irrigation, together with increased wind speeds, decreased air temperatures and increased specific humidity. Friction velocity, sensible heat and gas fluxes above the canopy were estimated using variations on the flux-gradient method, including a method which accounts for the roughness sublayer (RSL). These methods were compared to fluxes derived from observed eddy diffusivities of heat and friction velocity. We found that the use of the RSL parameterization, which accounts for the canopy-induced turbulent mixing above the canopy, resulted in a stronger momentum, heat, and ozone exchange fluxes above this orchard, compared to the method which omits the RSL. This was quantified by the increased friction velocity, heat flux and ozone deposition flux of up to 12, 29, and 35% at 2.5 m above the canopy, respectively. Within the canopy, vertical fluxes, as derived from local gradients and eddy diffusivity of heat, were compared to fluxes calculated using the Lagrangian inverse theory. Both methods showed a presence of vertical flux divergence of friction velocity, heat and ozone, suggesting that turbulent mixing was inefficient in homogenizing the effects driven by local sources and sinks on vertical exchange of those quantities. This weak mixing within the canopy was also corroborated in the eddy diffusivities of friction velocity and heat, which were calculated directly from the observations. Finally, the influence of water stress on the O3 budget was examined by comparing the results prior and after the irrigation. Although the analysis is limited to the local conditions, our in situ measurements indicated differences in the O3 mixing ratio prior and after irrigation during CHATS. We attribute these O3 mixing ratio changes to enhanced biological emission of volatile organic compounds (VOCs), driven by water stress
Effects of negative energy balance on liver gene and protein expression during the early postpartum period and its impacts on dairy cow fertility
End of project reportNegative energy balance (NEB) is a severe metabolic affecting high yielding dairy cows early post partum with both concurrent and latent negative effects on cow fertility as well as on milk production and cow health. The seasonal nature of Irish dairy production necessitates high cow fertility and a compact spring calving pattern in order to maximise grass utilisation. Poor dairy cow reproductive performance currently costs the Irish cattle industry in excess of €400 million annually. High milk yields have been associated with lower reproductive efficiency, and it has been suggested that this effect is probably mediated through its effects on the energy balance of the cow during lactation. The modern high genetic merit dairy cow prioritises nutrient supply towards milk production in early lactation and this demand takes precedence over the provision of optimal conditions for reproduction. In this study we used the bovine Affymetrix 23,000 gene microarray, which contains the most comprehensive set of bovine genes to be assembled and provides a means of investigating the modifying influences of energy balance on liver gene expression.
Cows in severe negative energy balance (SNEB) in early lactation showed altered hepatic gene expression in metabolic processes as well as a down regulation of the insulin-like growth factor (IGF) system, where insulin like growth factor-1 (IGF-1), growth hormone receptor variant 1A (GHR1A) and insulin-like growth factor binding protein-acid labile subunit (IGFBP-ALS) were down regulated compared to the cows in the moderate negative energy balance MNEB group, consistent with a five-fold reduction in systemic concentrations of IGF1 in the SNEB group.Cows in SNEB showed elevated expression of key genes involved in the inflammatory response such as interleukin-8 (IL-8). There was a down regulation of genes involved in cellular growth in SNEB cows and moreover a negative regulator of cellular proliferation (HGFIN) was up regulated in SNEB cows, which is likely to compromise adaptation and recovery from NEB.
The puma method of analysis revealed that 417 genes were differentially regulated by EB (P<0.05), of these genes 190 were up-regulated while 227 were down-regulated, with 405 genes having known biological functions. From Ingenuity Pathway Analysis (IPA), lipid catabolism was found to be the process most affected by differences in EB status
A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21
Interactions between pairs of isolated dwarf galaxies provide a critical
window into low-mass hierarchical, gas-dominated galaxy assembly and the
buildup of stellar mass in low-metallicity systems. We present the first
VLT/MUSE optical IFU observations of the interacting dwarf pair dm1647+21,
selected from the TiNy Titans survey. The H emission is widespread and
corresponds to a total unobscured star formation rate (SFR) of 0.44 M
yr, 2.7 times higher than the SFR inferred from SDSS data. The implied
specific SFR (sSFR) for the system is elevated by more than an order of
magnitude above non-interacting dwarfs in the same mass range. This increase is
dominated by the lower-mass galaxy, which has a sSFR enhancement of 50.
Examining the spatially-resolved maps of classic optical line diagnostics, we
find the ISM excitation can be fully explained by star formation. The velocity
field of the ionized gas is not consistent with simple rotation. Dynamical
simulations indicate that the irregular velocity field and the stellar
structure is consistent with the identification of this system as an ongoing
interaction between two dwarf galaxies. The widespread, clumpy enhancements in
star formation in this system point to important differences in the effect of
mergers on dwarf galaxies, compared to massive galaxies: rather than the
funneling of gas to the nucleus and giving rise to a nuclear starburst,
starbursts in low-mass galaxy mergers may be triggered by large-scale ISM
compression, and thus be more distributed.Comment: Accepted for publication in ApJ. 11 pages, 5 figures, 1 table.
Figures slightly degraded to meet arXiv size restrictions. For more
information about TiNy Titans see https://lavinia.as.arizona.edu/~tinytitans
Self-Referential Noise and the Synthesis of Three-Dimensional Space
Generalising results from Godel and Chaitin in mathematics suggests that
self-referential systems contain intrinsic randomness. We argue that this is
relevant to modelling the universe and show how three-dimensional space may
arise from a non-geometric order-disorder model driven by self-referential
noise.Comment: Figure labels correcte
Surface Environmental Surveillance Project: Locations Manual Volume 1 ? Air and Water Volume 2 ? Farm Products, Soil & Vegetation, and Wildlife
This report describes all environmental monitoring locations associated with the Surface Environmental Surveillance Project. Environmental surveillance of the Hanford site and surrounding areas is conducted by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE). Sampling is conducted to evaluate levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 450.1, Environmental Protection Program, and DOE Order 5400.5, Radiation Protection of the Public and the Environment. The environmental surveillance sampling design is described in the Hanford Site Environmental Monitoring Plan, United States Department of Energy, Richland Operation Office (DOE/RL-91-50). This document contains the locations of sites used to collect samples for the Surface Environmental Surveillance Project (SESP). Each section includes directions, maps, and pictures of the locations. A general knowledge of roads and highways on and around the Hanford Site is necessary to successfully use this manual. Supplemental information (Maps, Gazetteer, etc.) may be necessary if user is unfamiliar with local routes. The SESP is a multimedia environmental surveillance effort to measure the concentrations of radionuclides and chemicals in environmental media to demonstrate compliance with applicable environmental quality standards and public exposure limits, and assessing environmental impacts. Project personnel annually collect selected samples of ambient air, surface water, agricultural products, fish, wildlife, and sediments. Soil and vegetation samples are collected approximately every 5 years. Analytical capabilities include the measurement of radionuclides at very low environmental concentrations and, in selected media, nonradiological chemicals including metals, anions, volatile organic compounds, and total organic carbon
- …