6,210 research outputs found

    Polar type density of states in non-unitary odd-parity superconducting states of gap with point nodes

    Full text link
    It is shown that the density of states (DOS) proportional to the excitation energy, the so-called polar like DOS, can arise in the odd-parity states with the superconducting gap vanishing at points even if the spin-orbit interaction for Cooper pairing is strong enough. Such gap stuructures are realized in the non-unitary states, F_{1u}(1,i,0), F_{1u}(1,varepsilon,varepsilon^{2}), and F_{2u}(1,i,0), classified by Volovik and Gorkov, Sov. Phys.-JETP Vol.61 (1985) 843. This is due to the fact that the gap vanishes in quadratic manner around the point on the Fermi surface. It is also shown that the region of quadratic energy dependence of DOS, in the state F_{2u}(1,varepsilon,varepsilon^{2}), is restricted in very small energy region making it difficult to distinguish from the polar-like DOS.Comment: 5 pages, 3 figures, submitted to J. Phys.: Condens. Matter Lette

    Multipartite entanglement in 2 x 2 x n quantum systems

    Get PDF
    We classify multipartite entangled states in the 2 x 2 x n (n >= 4) quantum system, for example the 4-qubit system distributed over 3 parties, under local filtering operations. We show that there exist nine essentially different classes of states, and they give rise to a five-graded partially ordered structure, including the celebrated Greenberger-Horne-Zeilinger (GHZ) and W classes of 3 qubits. In particular, all 2 x 2 x n-states can be deterministically prepared from one maximally entangled state, and some applications like entanglement swapping are discussed.Comment: 9 pages, 3 eps figure

    Some algebraic properties of differential operators

    Full text link
    First, we study the subskewfield of rational pseudodifferential operators over a differential field K generated in the skewfield of pseudodifferential operators over K by the subalgebra of all differential operators. Second, we show that the Dieudonne' determinant of a matrix pseudodifferential operator with coefficients in a differential subring A of K lies in the integral closure of A in K, and we give an example of a 2x2 matrix differential operator with coefficients in A whose Dieudonne' determiant does not lie in A.Comment: 15 page

    Coupled SDW and Superconducting Order in FFLO State of CeCoIn5_5

    Full text link
    The mechanism of incommensurate (IC) spin-density-wave (SDW) order observed in the Flude-Ferrell-Larkin-Ovchinnikov (FFLO) phase of CeCoIn5_5 is discussed on the basis of new mode-coupling scheme among IC-SDW order, two superconducting orders of FFLO with B1g_{1{\rm g}} (dx2y2d_{x^{2}-y^{2}}) symmetry and π\pi-pairing of odd-parity. Unlike the mode-coupling schemes proposed by Kenzelmann et al, Sciencexpress, 21 August (2008), that proposed in the present Letter can offer a simple explanation for why the IC-SDW order is observed only in FFLO phase and the IC wave vector is rather robust against the magnetic field.Comment: 3pages, 1 figure, accepted for publication in J. Phys. Soc. Jpn., Vol.77 (2008), No.1

    Pressure-induced change of the pairing symmetry in superconducting CeCu2Si2

    Full text link
    Low-temperature (T) heat-capacity measurements under hydrostatic pressure of up to p=2.1 GPa have been performed on single-crystalline CeCu2Si2. A broad superconducting (SC) region exists in the T-p phase diagram. In the low-pressure region antiferromagnetic spin fluctuations and in the high-pressure region valence fluctuations had previously been proposed to mediate Cooper pairing. We could identify these two distinct SC regions. We found different thermodynamic properties of the SC phase in both regions, supporting the proposal that different mechanisms might be implied in the formation of superconductivity.Comment: 4 pages, 5 figure

    Limits on monopole fluxes from KFG experiment

    Get PDF
    The nucleon decay experiment at KGF at a depth of 2.3 Km is eminently suited for the search of Grand Unified theory (GUT) monopoles, whose velocities at the present epoch are predicted to be around 0.001C. At this depth the cosmic ray background is at a level 2/day in the detector of size 4m x 6m x 3.7m and one can look for monopoles traversing the detector in all directions, using three methods, i.e., (1) dE/dx (ionization); (2) time of flight and (3) catalysis of nucleon decay. The detector is composed of 34 layers of proportional counters arranged in horizontal planes one above the other in an orthogonal maxtrix. Each of the 1594 counters are instrumented to measure ionization in the gas (90% Argon + 10% Methane) as well as the time of arrival of particles

    Singular Effects of Impurities near the Ferromagnetic Quantum-Critical Point

    Full text link
    Systematic theoretical results for the effects of a dilute concentration of magnetic impurities on the thermodynamic and transport properties in the region around the quantum critical point of a ferromagnetic transition are obtained. In the quasi-classical regime, the dynamical spin fluctuations enhance the Kondo temperature. This energy scale decreases rapidly in the quantum fluctuation regime, where the properties are those of a line of critical points of the multichannel Kondo problem with the number of channels increasing as the critical point is approached, except at unattainably low temperatures where a single channel wins out.Comment: 4 pages, 2 figure

    Huge Enhancement of Impurity Scattering due to Critical Valence Fluctuations in a Ce-Based Heavy Electron System

    Full text link
    On the basis of the Ward-Pitaevskii identity, the residual resistivity ρ0\rho_{0} is shown to exhibit huge enhancement around the quantum critical point of valence transition in Ce-based heavy electron systems. This explains a sharp peak of ρ0\rho_{0} observed in CeCu2_2Ge2_2 under the pressure at PP\sim16GPa where the superconducting trasition temperature also exhibit the sharp peak.Comment: 5 pages, 1 figur

    Low-energy models for correlated materials: bandwidth renormalization from Coulombic screening

    Full text link
    We provide a prescription for constructing Hamiltonians representing the low energy physics of correlated electron materials with dynamically screened Coulomb interactions. The key feature is a renormalization of the hopping and hybridization parameters by the processes that lead to the dynamical screening. The renormalization is shown to be non-negligible for various classes of correlated electron materials. The bandwidth reduction effect is necessary for connecting models to materials behavior and for making quantitative predictions for low-energy properties of solids.Comment: 4 pages, 2 figure

    Origin of Drastic Change of Fermi Surface and Transport Anomalies in CeRhIn5 under Pressure

    Full text link
    The mechanism of drastic change of Fermi surfaces as well as transport anomalies near P=Pc=2.35 GPa in CeRhIn5 is explained theoretically. The key mechanism is pointed out to be the interplay of magnetic order and Ce-valence fluctuations. We show that the antiferromagnetic state with "small" Fermi surfaces changes to the paramagnetic state with "large" Fermi surfaces with huge enhancement of effective mass of electrons with keeping finite c-f hybridization. This explains the drastic change of the de Haas-van Alphen signals. Furthermore, it is also consistent with the emergence of T-linear resistivity simultaneous with the residual resistivity peak at P=Pc in CeRhIn5.Comment: 5 pages, 3 figures, submitted to Journal of Physical Society of Japa
    corecore