874 research outputs found

    Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides

    Get PDF
    We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si3_3N4_4 waveguides with a standard core cross section of 4.4×\times0.03 μ\mum2^2 size, buried 8 μ\mum deep in a SiO2_2 cladding we compare surface acoustic wave generation in various different geometries via a piezo-active, lead zirconate titanate film placed on top of the surface and driven via an interdigitized transducer (IDT). Using numerical solutions of the acoustic and optical wave equations, we determine the strain distribution of the SAW under resonant excitation. From the overlap of the acoustic strain field with the optical mode field we calculate and maximize the attainable amplitude of index modulation in the waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum shift in relative effective refractive index of 0.7x103^{-3} was obtained for TE polarized light, using an IDT period of 30 - 35 μ\mum, a film thickness of 2.5 - 3.5 μ\mum, and an IDT voltage of 10 V. For these parameters, the resonant frequency is in the range 70 - 85 MHz. The maximum shift increases to 1.2x103^{-3}, with a corresponding resonant frequency of 87 MHz, when the height of the cladding above the core is reduced to 3 μ\mum. The relative index change is about 300-times higher than in previous work based on non-resonant proximity piezo-actuation, and the modulation frequency is about 200-times higher. Exploiting the maximum relative index change of 1.2×\times103^{-3} in a low-loss balanced Mach-Zehnder modulator should allow full-contrast modulation in devices as short as 120 μ\mum (half-wave voltage length product = 0.24 Vcm).Comment: 19 pages, 8 figure

    Controlled Nanoparticle Formation by Diffusion Limited Coalescence

    Get PDF
    Polymeric nanoparticles (NPs) have a great application potential in science and technology. Their functionality strongly depends on their size. We present a theory for the size of NPs formed by precipitation of polymers into a bad solvent in the presence of a stabilizing surfactant. The analytical theory is based upon diffusion-limited coalescence kinetics of the polymers. Two relevant time scales, a mixing and a coalescence time, are identified and their ratio is shown to determine the final NP diameter. The size is found to scale in a universal manner and is predominantly sensitive to the mixing time and the polymer concentration if the surfactant concentration is sufficiently high. The model predictions are in good agreement with experimental data. Hence the theory provides a solid framework for tailoring nanoparticles with a priori determined size.Comment: 4 pages, 3 figure

    Boundary effect on CDW: Friedel oscillations, STM image

    Full text link
    We study the effect of open boundary condition on charge density waves (CDW). The electron density oscillates rapidly close to the boundary, and additional non-oscillating terms (~ln(r)) appear. The Friedel oscillations survive beyond the CDW coherence length (v_F/Delta), but their amplitude gets heavily suppressed. The scanning tunneling microscopy image (STM) of CDW shows clear features of the boundary. The local tunneling conductance becomes asymmetric with respect to the Fermi energy, and considerable amount of spectral weight is transferred to the lower gap edge. Also it exhibits additional zeros reflecting the influence of the boundary.Comment: 7 pages, 6 figure

    Cluster size dependence of high-order harmonic generation

    Get PDF
    We investigate high-order harmonic generation (HHG) from noble gas clusters in a supersonic gas jet. To identify the contribution of harmonic generation from clusters versus that from gas monomers, we measure the high-order harmonic output over a broad range of the total atomic number density in the jet (from 3*10^16 cm^{-3} to 3x10^18 cm{-3}) at two different reservoir temperatures (303 K and 363 K). For the firrst time in the evaluation of the harmonic yield in such measurements, the variation of the liquid mass fraction, g, versus pressure and temperature is taken into consideration, which we determine, reliably and consistently, to be below 20% within our range of experimental parameters. By comparing the measured harmonic yield from a thin jet with the calculated corresponding yield from monomers alone, we find an increased emission of the harmonics when the average cluster size is less than 3000. Using g, under the assumption that the emission from monomers and clusters add up coherently, we calculate the ratio of the average single-atom response of an atom within a cluster to that of a monomer and find an enhancement of around 10 for very small average cluster size (~200). We do not find any dependence of the cut-off frequency on the composition of the cluster jet. This implies that HHG in clusters is based on electrons that return to their parent ions and not to neighbouring ions in the cluster. To fully employ the enhanced average single-atom response found for small average cluster sizes (~200), the nozzle producing the cluster jet must provide a large liquid mass fraction at these small cluster sizes for increasing the harmonic yield. Moreover, cluster jets may allow for quasi-phase matching, as the higher mass of clusters allows for a higher density contrast in spatially structuring the nonlinear medium.Comment: 16 pages, 6 figure

    Single-shot fluctuations in waveguided high-harmonic generation

    Get PDF
    For exploring the application potential of coherent soft x-ray (SXR) and extreme ultraviolet radiation (XUV) provided by high-harmonic generation, it is important to characterize the central output parameters. Of specific importance are pulse-to-pulse (shot-to-shot) fluctuations of the high-harmonic output energy, fluctuations of the direction of the emission (pointing instabilities), and fluctuations of the beam divergence and shape that reduce the spatial coherence. We present the first single-shot measurements of waveguided high-harmonic generation in a waveguided (capillary-based) geometry. Using a capillary waveguide filled with Argon gas as the nonlinear medium, we provide the first characterization of shot-to-shot fluctuations of the pulse energy, of the divergence and of the beam pointing. We record the strength of these fluctuations vs. two basic input parameters, which are the drive laser pulse energy and the gas pressure in the capillary waveguide. In correlation measurements between single-shot drive laser beam profiles and single-shot high-harmonic beam profiles we prove the absence of drive laser beam-pointing-induced fluctuations in the high-harmonic output. We attribute the main source of high-harmonic fluctuations to ionization-induced nonlinear mode mixing during propagation of the drive laser pulse inside the capillary waveguide

    Theory of microphase separation in multiple segment-type statistical multiblock copolymers with arbitrary block molecular weight distributions

    Get PDF
    A Landau free energy is derived for the weak segregation regime (WSR) of melts belonging to a very general class of statistical multiblock copolymers, referred to as “multiple segment-type statistical multiblock copolymers.” Copolymer chains in this class consist of sequences of up to M⩾2 chemically different types of segments, organized into sequences of blocks of varying lengths (molecular weights). The possible sequences of blocks that are encountered in the copolymer chains, as far as their type is concerned, are described by a first-order Markov process, while the block molecular weight distributions of these M types of blocks are completely arbitrary. The number of blocks per chain is assumed to be large. This class of copolymers is sufficiently general to encompass all industrial relevant bulk statistical multiblock copolymers, such as all known thermoplastic elastomers. The particular free energy considered is just one realization of an even more general Landau free energy which is applicable to the WSR of melts of all conceivable copolymers, including homopolymers and all possible blends. The derivation of this Landau free energy is given in Appendix A

    A design for the generation of temporally-coherent radiation pulses in the VUV and beyond by a self-seeding high-GaIn free electron laser amplifier

    Get PDF
    A proposal for a self-seeding, tunable free-electron laser amplifier operating in the vacuum ultra-violet (VUV) region of the spectrum is presented. Full three-dimensional (3D) modelling of the free electron laser and the optical feedback system has been carried out. Simulations demonstrate the generation of near transform limited radiation pulses with peak powers in the hundreds of megawatts. Preliminary 1D simulations show that by using a similar system it may be possible to extend such operation beyond the VUV to higher photon energies

    High-purity microwave generation using a dual-frequency hybrid integrated semiconductor-dielectric waveguide laser

    Get PDF
    We present an integrated semiconductor-dielectric hybrid dual-frequency laser operating in the 1.5 μ\mum wavelength range for microwave and terahertz (THz) generation. Generating a microwave beat frequency near 11 GHz, we observe a record-narrow intrinsic linewidth as low as about 2 kHz. This is realized by hybrid integration of a single diode amplifier based on indium phosphide (InP) with a long, low-loss silicon nitride (Si3_3N4_4) feedback circuit to extend the cavity photon lifetime, resulting in a cavity optical roundtrip length of about 30 cm on a chip. Simultaneous lasing at two frequencies is enabled by introducing an external control parameter for balancing the feedback from two tunable, frequency-selective Vernier mirrors on the Si3_3N4_4 chip. Each frequency can be tuned with a wavelength coverage of about 80 nm, potentially allowing for the generation of a broad range of frequencies in the microwave range up to the THz range

    High confinement, high yield Si3N4 waveguides for nonlinear optical application

    Get PDF
    In this paper we present a novel fabrication technique for silicon nitride (Si3N4) waveguides with a thickness of up to 900 nm, which are suitable for nonlinear optical applications. The fabrication method is based on etching trenches in thermally oxidized silicon and filling the trenches with Si3N4. Using this technique no stress-induced cracks in the Si3N4 layer were observed resulting in a high yield of devices on the wafer. The propagation losses of the obtained waveguides were measured to be as low as 0.4 dB/cm at a wavelength of around 1550 nm.Comment: 10 pages, 4 figure

    Ultra-narrow linewidth hybrid integrated semiconductor laser

    Get PDF
    We demonstrate a hybrid integrated and widely tunable diode laser with an intrinsic linewidth as narrow as 40 Hz, achieved with a single roundtrip through a low-loss feedback circuit that extends the cavity length to 0.5 meter on a chip. Employing solely dielectrics for single-roundtrip, single-mode resolved feedback filtering enables linewidth narrowing with increasing laser power, without limitations through nonlinear loss. We achieve single-frequency oscillation with up to 23 mW fiber coupled output power, 70-nm wide spectral coverage in the 1.55 μ\mum wavelength range with 3 mW output, and obtain more than 60 dB side mode suppression. Such properties and options for further linewidth narrowing render the approach of high interest for direct integration in photonic circuits serving microwave photonics, coherent communications, sensing and metrology with highest resolution.Comment: 13 pages, and 11 figure
    corecore