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Abstract. A proposal for a self-seeding, tunable free-electron laser amplifier

operating in the vacuum ultra-violet (VUV) region of the spectrum is presented.

Full three-dimensional (3D) modelling of the free electron laser and the optical

feedback system has been carried out. Simulations demonstrate the generation

of near transform limited radiation pulses with peak powers in the hundreds of

megawatts. Preliminary 1D simulations show that by using a similar system it

may be possible to extend such operation beyond the VUV to higher photon

energies.
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1. Introduction

The 4th generation light source (4GLS) facility is proposed by the UK’s Science and Technology

Facilities Council (STFC) Daresbury Laboratory [1] to meet the needs of a wide range of

science research requiring high brightness synchronized sources from THz frequencies to

photon energies of 100 eV. The facility will comprise a range of sources including synchrotron

radiation sources, free-electron lasers (FELs) and conventional lasers, which will be combined

synchronously to allow innovative pump–probe experiments [2]–[4].

The two most important differences between 4GLS and 3rd generation synchrotron

facilities are the increased peak brightness, typically eight orders of magnitude due to the

greatly improved temporal coherence, and the shorter pulse lengths down to .100 fs. While

3rd generation sources are able to characterize the structure of systems at the molecular level,

the short pulse, high brightness, variably synchronized pump–probe techniques that will be

employed at 4GLS will also enable short timescale process dynamics to be studied. The FEL

sources will also generate fully variably polarized output.

The three main high-brightness sources of 4GLS are: in the extreme ultra-violet a high gain

seeded FEL [5, 6] (XUV-FEL) generating photon energies between 8–100 eV at peak power

levels of 8–2GW in pulses of ∼50 fs full-width half-maximum (FWHM); an infra-red FEL

(IR-FEL) operating between 2.5–200µm with peak powers of between 1–20MW in pulses

of 0.3–30 ps FWHM [6]; and, the subject of this paper, a vacuum ultra violet FEL (VUV-FEL)

operating within a small feedback low-Q cavity to generate photons in the energy range 3–10 eV.

The advanced sources of 4GLS will allow the study of a wide range of important new

science and will rely heavily upon the synchronization of the sources in pump–probe type

experiments. Specific studies requiring the VUV-FEL include [3, 4]: reflection anisotropy

spectroscopy (RAS) of electrochemical interfaces e.g. the study of interactions between DNA

sequences at metal–liquid interfaces; extension of sum frequency generated (SFG) spectral

analysis over a wide spectral range when synchronized with the IR-FEL; circular dichroism

microscopy, resonance Raman microscopy and time-resolved resonance Raman microscopy
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Figure 1. Schematic layout of the 4GLS conceptual design with the VUV-FEL

branch highlighted in colour. Before electron bunches enter the VUV-FEL they

pass through a distributed bunching system and may also generate radiation in

five spontaneous radiation undulator sources.

allowing increased structural resolution and the study of the chemistry of sub-cellular domains

in real time of proteins, carbohydrates and nucleic acids; the creation and study of transient,

short-lived species such as those created in the upper atmosphere and interstellar dust clouds;

the reaction pathways in asymmetric synthesis and of the origins of the homochirality of

life; the measurement of ultra-fast charge and spin dynamics in optoelectronic nanomaterials,

photovoltaics and magnetic semiconductors; and, when used with the XUV-FEL, the use of

quantum chemical control to explore molecular evolution and chemical reactions.

A schematic of the 4GLS layout highlighting the VUV-FEL is shown in figure 1. The

VUV-FEL will operate in the 600MeV high average current branch of the energy recovery linac

(ERL), being driven by ∼80 pC electron bunches at up to 1.3GHz. In addition to driving the

VUV-FEL the electron bunches will be able to drive five upstream (US) spontaneous emission

undulator sources. A system of distributed bunch compression between these US sources will

achieve bunch lengths down to ∼100 fs generating a peak current of ∼300A before injection

into the VUV-FEL. Table 1 summarizes the VUV-FEL output as predicted by the analysis

presented in this paper.

The design chosen for the VUV-FEL is based upon a high-gain amplifier system that

utilizes a cavity with a low quality factor to generate a small amount of feedback [7]. This type

of design was identified as being of particular interest for a short wavelength FEL such as the

VUV-FEL where cavities are restricted by the available mirror reflectivities [7, 8]. Nevertheless,

a small amount of feedback is sufficient to allow the FEL to achieve high-gain type saturation

within a few cavity round trips. Such a system has also been termed a regenerative amplifier

FEL (RAFEL) [8, 9]. A proposal has also been made to use narrow-bandwidth Bragg crystals

as mirrors in a RAFEL configuration to generate a hard x-ray FEL [10]. This system relies upon

the relatively narrow bandwidth of the Bragg reflections with respect to the FEL gain bandwidth

to improve the temporal coherence of the output.
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Table 1. Predicted VUV-FEL radiation output.

Tuning range ∼3–10 eV

Peak power ∼500–300MW (3 GWa)

Repetition rate n × 4 1
3
MHz (n 6 300, integer)

Polarization Variable elliptical

Min pulse duration FWHM 170 fs (25 fsa)

Typical 1ν1t ∼1.0

Maximum pulse energy 70µJ

Maximum average power n × 300W

aIndicates possible output in superradiant mode of operation.

It has been shown from preliminary one dimensional (1D) simulations of the VUV-

FEL [11, 12] that the optimum outcoupling fraction is ∼75% for mirrors of 60% reflectivity.

This preliminary modelling predicts near maximum possible output power at a stable working

point, so that the output power is relatively insensitive to small changes in outcoupling fraction

or mirror reflectivity.

There are several expected advantages of the RAFEL over a low-gain oscillator FEL. As

discussed, it can operate with low reflectivity mirrors in a region where high reflectivity is not

available. The RAFEL should also be less sensitive to radiation-induced mirror degradation, and

the small number of passes required to reach saturation should relax the longitudinal alignment

tolerances. The optical feedback allows the undulator length to be reduced significantly

compared to a self amplified spontaneous emission (SASE) FEL.

In this paper, the previous 1Dmodelling of the VUV-FEL is extended to full 3D simulations

of the FEL interaction using Genesis 1.3 [13]. These Genesis 1.3 simulations have been

integrated with a new 3D optics simulation code optical propagation code (OPC) [14] which

models radiation transport outwith the FEL interaction region of the hole out-coupled cavity to

generate a full 3D simulation of the VUV-FEL. These simulations confirm the validity of the

4GLS conceptual design report (CDR) design [6, 11, 12] and allow proper modelling of the

cavity resonator over the 3–10 eV operational range. An analysis of the temporal coherence of

the output at 10 eV demonstrates significant improvements over SASE generating near Fourier

transform limited pulse output.

Preliminary results of 1D modelling are also presented for a system with a low feedback

factor that returns only 10−5 of the undulator output. Such low feedback may occur when mirror

reflectivities are very poor, for example with a RAFEL system attempting operation into the

XUV and x-ray regions of the spectrum. The results are good and suggest that in principle a low

feedback RAFEL may prove a viable source at much higher photon energies.

2. 1D simulations

In this section the previous 1D simulation results of [6, 11, 12] which describe the initial 4GLS

VUV-FEL design are summarized to demonstrate the RAFEL concept and allow comparison

with the following 3D simulations.
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Figure 2. The maximum scaled output power |A|2 at saturation as a function of

scaled undulator length z̄ for a range of mirror reflectivities.

Some optimization of cavity mirror reflectivity and outcoupling fraction is first performed

in the steady-state regime, where temporal pulse effects are neglected. In figure 2 the maximum

scaled output power |A|2 at saturation, maximized with respect to the outcoupling fraction, is

plotted as a function of universally scaled FEL interaction length z̄ = z/ lg for several mirror

reflectivities. Here lg = λu/4πρ is the nominal 1D gain length, λu is the undulator period and ρ

is the FEL parameter [15]. It is seen that for z̄ = 4 this maximized power is relatively insensitive

to the mirror reflectivity—mirror reflectivities of 60% yield a power only 5% lower than that

obtained using 95% reflectivity mirrors. While these results for the outcoupling fraction that

maximizes the output power are encouraging it is important to examine the sensitivity of the

output as a function of the outcoupling fraction to ensure stability with respect to changes in the

outcoupling. This is shown in figure 3 for z̄ = 4 and for three mirror reflectivities R = 40, 60

and 95%. For mirror reflectivity R = 60%, the outcoupling fraction that maximizes the output

power is seen to be 92% and it is also seen that a small increase above 92% would prevent

lasing to saturation. Thus, any minor electron beam instabilities or fluctuations in the transverse

optical mode could stop lasing. It is therefore preferable to operate with a lower outcoupling,

of say 75%, at the expense in a small decrease in output power to achieve a greater stability.

Indeed, with a fixed outcoupling of 75% the output power is seen to increase with a decrease in

the mirror reflectivity. This may be explained from the slight over-saturation of the single pass

high-gain FEL mechanism, due to the lower power outcoupling, and has the practical advantage

that any mirror degradation will reduce the power feedback which acts as the seed field. This

reduced seed decreases the over-saturation and results in an increase in the power output.

When temporal pulse effects are included then the length of the cavity with respect to

the rate at which the electron bunches enter the FEL becomes important [16]–[20]. This is

demonstrated in the results of 1D simulations presented in [12] and shown in figure 4 where

the saturated peak power and FWHM pulse width are plotted as a function of cavity detuning.

(A positive detuning corresponds to a shortening of the cavity.) The dependence of the peak

power and pulse width upon cavity detuning is very similar to that of low-gain oscillator
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Figure 3. Scaled output power |A|2 as a function of outcoupling fraction, for

mirror reflectivities R = 40, 60 and 95% and for a scaled undulator length z̄ = 4.

Figure 4. Radiation pulse peak power (red) and FWHM pulse width (blue) as

a function of cavity detuning for 1D VUV-FEL simulations operating at photon

energy of 10 eV.

FELs [16, 17, 20]. As with these systems, there is a significant increase in peak power and

pulse shortening close to cavity resonance which in the low-gain system is due to superradiant

behaviour [18, 19]. We speculate, but have not proven, that the same superradiant effects are

present in the 1D simulations of this high-gain system.

3. VUV-FEL design parameters

The VUV-FEL is designed to generate radiation of variable polarization and will use APPLE-II

variably polarized undulator modules. The following parameters have been selected using
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Table 2. VUV-FEL parameters for 10 eV operation.

Undulator

Undulator period λw 60mm

Periods per module 37

Number of modules 5

Electron beam

Electron beam energy 600MeV

Relative energy spread (rms) 0.1%

Bunch charge 80 pC

Peak current 300A

Normalized emittance 2mm-mrad

Optical cavity

Cavity length Lcav 34.6m

US ROC r1 12.85m

Downstream (DS) ROC r2 22.75m

Rayleigh length zR 2.8m

Fundamental mode waist w0 0.34mm

Waist position (measured from US mirror) 12.2m

Outcoupling hole radius 2mm

Cavity stability g1 × g2 0.88

simple analysis and the FEL design formulae of Xie [21]. A summary of the design parameters

are given in table 2 and a schematic shown in figure 5 where the fundamental cold-cavity mode

is shown on the same longitudinal scale as the machine layout.

An undulator period of 60mm enables the photon energy range 3–10 eV to be covered

by undulator gap tuning from 10–19mm in helical mode and 12–25mm in planar mode. For

sufficient gain for RAFEL operation the undulator length must give a gain equivalent in the 1D

limit to z̄ > 4 over all wavelengths and polarisations. The required length is found using the

Xie formulae [21] to be 11m and is achieved with five 2.2m modules of 37 periods. An inter-

module gap of 0.6m allows space for a focusing quadrupole, beam position monitor and phase

matching unit. A FODO focusing lattice is used with each quadrupole of length 0.12m and of

strength 9 Tm−1.

The resonator parameters were initially derived from simple cold-cavity assumptions. The

fundamental cold-cavity mode is focused to maximize the transverse overlap, and hence FEL

coupling, between radiation and electron beam over the first two undulator modules. This is

achieved with a waist at the end of the first module, ∼12.2m from the US mirror as shown in

figure 5. The optimum Rayleigh length zR for maximum overlap is then approximately one third

the total length of the two modules plus gap, i.e. zR ∼ 1.7m. However, for this Rayleigh length

the cavity geometry is close to instability and gives an excessive waist radius at the downstream

(DS) mirror and some diffraction losses on the undulator aperture for the longer wavelengths.

Furthermore, the outcoupling hole radius on the DS mirror is larger than the waist radius of

the spontaneous radiation emitted on the first pass and does not allow sufficient feedback.

A Rayleigh length was therefore chosen so that the waist radius of the fundamental cavity mode
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Figure 5. A schematic of the 4GLS VUV-FEL with the baseline design

parameters. The fundamental cavity mode at 1/e2 of the on-axis intensity is

shown in blue on the same longitudinal scale as the engineering representation.

Electron beam transport is right to left.

is the same as the estimated waist radius of the spontaneous emission. This gives a Rayleigh

length of 2.8m, somewhat larger than the value for maximum overlap.

The outcoupling hole radius is chosen so that the outcoupling fraction of the fundamental

cold-cavity mode is 65%.While this is less than the 75% value suggested by the 1D simulations,

the high-gain FEL interaction will guide the radiation so reducing the waist radius and increase

the outcoupling fraction towards its optimum value. A mirror material of protected aluminium

with a reflectivity of 60% at 10 eV is assumed [22].

4. 3D simulations

Previous modelling of the VUV-FEL has been carried out using a 1D model and also one that

used the 3D code Genesis 1.3 for the FEL interaction, but a greatly simplified cavity model

that approximated the cavity feedback as a simple attenuator of the FEL output [11, 12]. The

latter model has been greatly improved by incorporating a proper modelling of the cavity.

A new simulation code, OPC, has been developed which simulates in 3D the optical components

and radiation propagation within the non-amplifying sections of the optical cavity [14]. OPC

works together with Genesis 1.3 to simulate a complete FEL cavity configuration. A summary

of the combined OPC-Genesis 1.3 simulation code is presented before using it to model the

VUV-FEL operating at 10 and 3 eV in steady-state mode. Analyses of the transverse radiation

characteristics are presented and scans over cavity geometry parameters are performed in a

first–attempt performance optimization. The OPC-Genesis 1.3 simulation code is then used in

time–dependent mode to examine the temporal coherence of the radiation output.

4.1. The simulation code

The OPC [14, 23] models propagation of a monochromatic radiation field in the paraxial

approximation between an input and an output plane. OPC is able to implement three different
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methods for propagation: the spectral method (SM), the Fresnel diffraction integral (FDI) and

a modified FDI (MFDI). The MFDI includes the total ABCD matrix of the optical system that

is present between the input and output plane. All three propagation methods are numerically

implemented using fast Fourier transforms (FFTs), however the SM allows a more efficient

numerical implementation and is computationally the fastest of the three [14, 23]. The drawback

is that SM usually requires the largest transverse grid to avoid ‘numerical reflections’ of the

wave at the grid boundary in the propagation region [24]. These reflections are not present when

FDI or MFDI are used. Furthermore, MFDI has the advantage that it allows for a magnification

factor between input and output plane despite the use of FFTs, and although the number of grid

points is the same, their spacing need not be constant in the input and output plane [14]. Hence,

using MFDI the grid can expand and follow the free space diffraction of an optical wave.

The resonator cavity FEL may be described as a gain section, i.e. the FEL amplifier, and the

remainder of the optical cavity. Propagation of the radiation through the undulator is modelled

by Genesis 1.3, while OPC propagates the optical field through the non-amplifying section of

the resonator. Running both codes sequentially provides a single pass through the resonator. The

two separate codes couple with each other through the electric field distribution of the optical

wave that can be written to or read from file by each code. The Perl scripting language is used

to both control the program flow and to define the resonator geometry. OPC has a functionality

build into it that allows for parameter scans over both OPC and Genesis 1.3 input parameters.

Various optical components, such as lenses, mirrors, diaphragms, and hole coupled mirrors

are available to construct optical resonators. The optical propagation code enables prediction of

the output at each of the various optical elements, which is of advantage for beam diagnostics

and for designing suitable optics for a further propagation of the output beam. It can also be

used to determine the far field distribution of the out-coupled laser beam. The full functionality

of Genesis 1.3 is maintained and resonator-based FELs can be modelled both in steady-state and

time-dependent modes. Cavity detuning is realized through a control parameter already present

in the Genesis 1.3 configuration file that controls the synchronization of the radiation pulse with

the electron pulse at the entrance to the undulator.

4.2. Steady-state simulations

The parameters detailed in table 2 have been used for the initial simulations for 10 eV linearly

polarized operation in the steady-state regime (i.e. neglecting temporal pulse effects). The

growth of output power and the measured outcoupling fraction are shown in figure 6 as a

function of the radiation cavity round trip pass number. At saturation the output power is

350MW with an outcoupling fraction of ∼68%. Note that as the radiation power grows during

the first few cavity round trips, the outcoupling is higher at ∼72% and peaks at about 80% after

ten round trips where the laser saturates. With further round trips the outcoupling drops and

stabilizes at 68%. This simulation demonstrates the dynamic behaviour of the transverse optical

mode of the laser beam as it builds up from noise to saturation.

In figure 7 the transverse power profiles, scaled with respect to the peak power, are

plotted at saturation (round trip number twenty) at different points within the optical cavity:

the undulator exit; incident on the hole out-coupled DS mirror; output from the outcoupling

hole; reflected by the DS mirror; incident on the US mirror; and at the undulator entrance. It

is clear that there is significant higher order transverse mode content in the radiation field. It is

interesting that although the on-axis power of the radiation reflected from the DS outcoupling
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Figure 6. The radiation output power (blue) and the outcoupling percentage

(green) as a function of cavity pass number for 10 eV operation.

mirror is zero, due to the outcoupling hole, by the time the radiation is transported through the

cavity and reflected back into the undulator, the transverse power profile is transformed so that

the peak power is on-axis. This allows the radiation to maintain good coupling with the electron

beam and act as a seed for the next pass.

4.3. Cavity effects

A study has been done to investigate the effects of the hole outcoupled cavity upon the power

and transverse mode structure of the output. The cavity parameters of mirror reflectivity, mirror

geometry (affecting cold-cavity beam waist position and radius), and outcoupling hole radius

have been varied about the initial design parameters of table 2. This is initially performed

for 10 eV photon output, with results discussed in section 4.3.1, and then for 3 eV output, at

the other end of the VUV-FEL operational range, in section 4.3.2. A wavelength dependent

mirror reflectivity is introduced in section 4.3.3 to extend the results to the full photon energy

range 3–10 eV.

4.3.1. 10 eV operation. In figure 8 the effect of varying the radius of the outcoupling hole

and the mirror reflectivity on the saturated output power is plotted as a colour contour plot.

(Saturation is defined to occur here after twenty cavity passes by which time actual saturation

of the FEL output has occurred except perhaps at some of the extremes of the parameter ranges

used in this and in the following simulation results.) The results show that the parameters as

defined in the CDR [6] and reproduced in table 2 (output coupling hole radius 2mm and mirror

reflectivity 60%) give a satisfactory and stable output. In fact, in terms of the output power,

these parameters are reasonably close to the optimum as the power is near to its maximum

and small changes in outcoupling hole radius and mirror reflectivity have only a small effect

on the output power. The prediction of the simple 1D simulations, that a reduction in mirror

reflectivity would cause a small increase in output power, is also demonstrated to be valid in 3D

New Journal of Physics 9 (2007) 239 (http://www.njp.org/)

http://www.njp.org/


11

–2 –1 0 1 2
0

0.5

1.0

P
 (

a
.u

.)

Undulator exit

–10 –5 0 5 10
0

0.5

1.0

P
 (

a
.u

.)

Output

–10 –5 0 5 10
0

0.5

1.0

P
 (

a
.u

.)

Reflected DS mirror

–10 –5 0 5 10
0

0.5

1.0

P
 (

a
.u

.)

Incident DS mirror

–10 –5 0 5 10
0

0.5

1.0

P
 (

a
.u

.)

Incident US mirror

–2 –1 0 1 2
0

0.5

1.0

x (mm)

P
 (

a
.u

.)

Undulator entrance

Figure 7. Power cross-sections at saturation, scaled with respect to their peak

values, for different positions within the optical cavity. The parameters are those

of the CDR (table 2) with cold-cavity waist position 12.2m and waist radius

0.34mm.

simulations. Therefore, in what follows, unless explicitly stated otherwise, a mirror reflectivity

of 60% is assumed for operation at 10 eV.

Different cavity configurations have been investigated by changing the radius of curvature

(RoC) of the mirrors so that either the waist radius of the lowest order cold-cavity mode, or the

waist position within the cavity, is kept constant while the other was varied. The dependence of

the output power on hole radius and waist position is shown in figure 9. It is seen that the waist

position which gives a relatively broad region of stable power output is at ∼10.5m from the US

mirror. This differs slightly from the CDR value of 12.2m from the US mirror.
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waist position, for a waist radius of 0.34mm.

From figure 10 it can be seen that for a cold-cavity waist position of 12.2m from the US

mirror there is little dependence on the cold-cavity waist radius even when the waist radius

is 0.1mm which corresponds to the transition to an unstable resonator cavity case where the

cavity stability parameter g1g2 = 1. This region of the unstable resonator case has not yet been

investigated but may prove an interesting topic for future research. Similar results were obtained

for a waist position of 10.5m from the US mirror. This leads to the conclusion that consideration

of cold-cavity resonator modes are not very relevant to this design as the effects of gain-guiding

of the radiation by the high-gain FEL interaction effectively forces the beam waist toward the

end of the undulator and strongly dominates cavity mode effects. This conclusion is supported

by the following simulations investigating the effect of changes in cold-cavity waist position on

the radiation transverse power profiles at different cavity positions.

The transverse cross-section of the intensity as a function of waist position at the input to

the undulator is shown in figure 11. This is consistent with the previous results of figure 7 and

demonstrates that the power is peaked on axis to act as an effective seed which couples to the

electron bunches entering the undulator.
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Figure 10.Output power as a function of outcoupling hole radius and cold-cavity

waist radius, for waist position of 12.2m.
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Figure 11. Intensity (a.u.) cross-section at the undulator entrance as a function

of the cold-cavity waist position of the fundamental mode of the resonator for a

outcoupling hole radius of 2mm.

Plotted in figure 12 is the far-field intensity transverse cross-section calculated at 14m

beyond the 2mm radius outcoupling hole, where the VUV-FEL design has optical diagnostics

situated. Again the dependence on cold-cavity waist position is relatively weak. However, this

far-field cross-section does display a significant higher order transverse mode structure, with a

local minimum intensity on axis. The effect of output-coupling hole radius on the far-field cross-

section is shown in figure 13. While the far field cross-section can be improved to more closely

approximate a fundamental Gaussian mode by reducing the hole radius to ∼1mm, this has the

consequence of reducing the output power by a factor &2 as may be seen from figures 8 to 10.

Nevertheless, the form of the transverse profile will be an important consideration and dependent

upon the experimental requirements and will need to be considered further in consultation with

potential users.

Finally the total power, as a function of distance through the undulator and of the cold-

cavity waist position, is plotted in figure 14. The waist position of the initial design parameters

of 12.2m is seen to give the largest power growth rate, with values about this waist position

giving saturation nearer the end of the undulator.
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Figure 13. Intensity (a.u.) cross-section in the far field as a function of

outcoupling hole radius, for cold-cavity waist position 12.2m.

Further detailed optimization will be carried out to maximize the output power while

maintaining an optimum far-field cross-section. This will include an investigation of unstable

resonators with cavity stability parameters g1g2 > 1. The effects of optical transport on this

transverse modal structure have yet to be investigated.

4.3.2. 3 eV optimization. Simulations similar to the previous section have been performed for

a photon energy of 3 eV. This corresponds to the opposite end of the spectral range of operation

of the VUV-FEL. In figure 15 the output power is plotted as a function of out-coupling hole

radius and cold-cavity waist position, corresponding to figure 9 for 10 eV operation. The initial

design value for the waist position was 12.2m. The plot of figure 15 shows that the output power

may be increased by changing the waist position to 10m. From figure 5 it is seen that this waist

position is at the entrance of the undulator. For 10 eV operation the optimum waist position was

∼10.5m and this appears a reasonable compromise for the 3 eV case. With this waist position,

the output power is plotted in figure 16 as a function of waist radius and hole radius. As for

the 10 eV case of figure 10, the waist radius of the fundamental cold-cavity mode has minimal
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Figure 14. Radiation power along the undulator as a function of the cold-cavity

waist position. The slight regular vertical band structure in the plot is due to the

gaps between undulator sections.
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Figure 15. The output power as a function of outcoupling hole radius and cold-

cavity waist position for 3 eV photon output.

effect on the output power below approximately 0.4mm. For larger values of the waist radius the

behaviour appears quite complex and requires further analysis. Note that in figure 16 a greater

range of the waist radius up to 0.7mm has been considered when compared with the 10 eV case

of figure 10 which is plotted for waist radius up to only 0.5mm.

4.3.3. 3–10 eV operation. A disadvantage of mirror hole out-coupling is that the out-coupling

fraction is wavelength-dependent because the mode radius at the mirror is proportional to the

square root of the wavelength. In order to assess the tuning ranges available from a mirror with

fixed hole radius the output power is plotted as a function of hole radius over the photon energy

range 3–10 eV. The mirror reflectivity has been assumed to vary linearly with photon energy

from 85% at 3 eV to 60% at 10 eV. From the 3 and 10 eV results above a cold-cavity waist

position of 10.5m gave good results for both photon energies. This waist position is therefore

chosen for the other photon energies and the results are plotted in figure 17. Based on these

results, three sets of mirrors with different out-coupling hole radii are proposed to cover the

3–10 eV range and are summarized in table 3.
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Figure 16.Output power as a function of outcoupling hole radius and cold-cavity

waist radius for 3 eV photon operation with the waist position of 10.50m from

the US mirror.
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Figure 17. The output power as a function of photon energy and mirror

outcoupling hole radius. The mirror reflectivity varies linearly with photon

energy from 85% at 3 eV to 60% at 10 eV.

Table 3. Summary of mirror sets.

R1 (m) R2 (m) Hole radius (mm) Tuning range (eV) Output power (MW)

A 10.57 24.11 2.5 3.0–6.5 250–400

B 10.57 24.11 2.0 3.5–9.0 250–400

C 10.57 24.11 1.5 6.5–10.0 250–300

Table 3 shows that the full photon energy range may be covered with only two mirror sets

(A and C). However, using a third mirror set (B) gives the user the largest tuning range from

3.5 to 9 eV with a single mirror set. Indeed, it would also be possible to use this single mirror to

cover the complete 3–10 eV tuning range, however, as seen from figure 17, the output powers

attainable would be slightly reduced from the 250–400MW. Table 3 also demonstrates that a
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Figure 18. 3D simulation of the radiation output pulse power for VUV-FEL

operation at 10 eV after 1, 3 and 20 passes.

single cavity resonator geometry may be used with only the outcoupling hole needing to be

altered. This should allow for a relatively simple design and alignment of the cavity.

4.4. Time dependent simulations

3D time-dependent simulations have been performed to investigate the VUV-FEL radiation

pulse properties. In addition to the peak pulse powers, of great importance to potential users

of the radiation is the longitudinal coherence as measured by the time–bandwidth product.

The VUV-FEL design parameters of table 2 are used for a photon energy operation of 10 eV

with the cavity detuning close to synchronizm. Cavity detuning is synchronous when the cavity

round-trip time for the radiation, 2Lcav/c, is equal to an integer multiple of the period between

successive electron bunches. Previous studies of FEL resonator cavities have shown that close

to synchronizm the FEL interaction moves toward a superradiant evolution where the radiation

power scales as the peak electron bunch current squared [6, 19]. This superradiant behaviour

generates higher peak powers than predicted by steady-state theory and generates narrow pulses.

Similar pulse behaviour was reported from the 1D simulations of the VUV-FEL simulations

of [12] and reproduced in figure 4. While superradiance has not been explicitly tested for, the

pulse narrowing and larger peak powers associated with superradiance are observed in the 3D

simulations.

The pulse power profiles of figure 18 for the VUV-FEL design operation at 10 eV are

seen to be relatively smooth only after three cavity passes when compared to the relatively

noisy output after the first pass through the cavity. Here, the parameter s is the distance as

measured from the ‘tail’ of the electron bunch. These results are in good agreement with those

of the 1D simulations summarized in figure 4. This improved power profile is indicative of

the development of temporal coherence in the output pulses. Furthermore, after twenty passes

saturation occurs and the pulse length has reduced significantly suggesting a superradiant-type

pulse evolution.

A more complete analysis has been carried out to quantify the development of the temporal

coherence by recording at the end of each cavity pass the pulse time–bandwidth product as

defined by:

1ν1t =
1

λ

(

1λ

λ

)

1z,
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Figure 19. The left hand figure plots the radiation pulse FWHM linewidth and

FWHM pulse length. The right hand figure shows the calculated time–bandwidth

product 1ν1t . The dotted red line shows, for reference, the time–bandwidth

product of a transform limited Gaussian pulse (1ν1t = 0.44).

where 1z is the pulse width. The numerical value obtained depends upon the definition of

width. For the analysis here FWHM values are used and for this case a Fourier transform-limited

Gaussian pulse has a time–bandwidth product1ν1t ≃ 0.44. In figure 19 the development of the

FWHM linewidth, FWHM pulse length and the time–bandwidth product are plotted for the first

20 passes. It is seen that only after three passes the time–bandwidth product is approximately

equal to that of a transform limited Gaussian. The increase in the bandwidth from pass 17 is

seen to increase the time–bandwidth product. It has been observed from 1D simulations that

this type of behaviour is dependent upon the cavity detuning and can be greatly reduced for

some cavity detunings. It is thought that the behaviour is related to the work of [18] and this is

the subject of ongoing research.

Simulations carried out with a 1D time-dependent code are in good agreement with this

result for cavity lengths close to synchronizm [6, 12]. These 1D simulations also show that in

the quasi steady-state regime, where the cavity is detuned to offset the effect of pulse lethargy

(cavity length detuning of ∼15µm in figure 4), the coherence develops equally rapidly with

time–bandwidth products at saturation of 1ν1t ≃ 1.0.

5. RAFEL operation at higher photon energies

The above results present a specific design for the 3–10 eV photon energy VUV-FEL of the

4GLS project in which the minimum required cavity feedback is of the order of a few percent,

although potentially more stable output could be obtained for ∼10%. The feedback provides

a seed pulse which is of sufficient intensity to dominate the shot noise power in the electron

beam, enabling the subsequent high-gain FEL mechanism to develop output of good temporal

coherence generating close to transform-limited pulses.
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The possibility of operating a RAFEL at higher photon energies, into the XUV and possibly

beyond, is now considered. There is a general trend of reduced mirror reflectivity towards higher

photon energies and this will diminish the feedback obtainable. A possible exception is via the

use of Bragg-type crystal mirrors, employed in the design proposed in [10]. However, the need

to satisfy the Bragg condition restricts the ability to tune the FEL.

A minimum feedback fraction will be required to ensure that the temporal coherence is

retained pass-to-pass because the power returned by the cavity to the start of the undulator must

be sufficient to dominate the electron beam shot noise. As the feedback fraction is decreased so

the FEL interaction length must be increased to achieve saturation. In the limit where the power

feedback is less than that due to shot-noise the FEL reverts to a SASE FEL. It can be shown

from [25] that in the universal scaling of [15] the shot-noise power is:

|A0|2 ≈
6
√

πρ

Nλ

√
ln (Nλ/ρ)

,

where Nλ is the number of electrons per radiation wavelength. At saturation the scaled saturated

power is |Asat|2 ∼ 1 and so the scaled power acting as seed at saturation is F |Asat|2 ∼ F , where

F is the fractional feedback factor of the cavity. Hence the requirement that the power feedback

will dominate the shot-noise power may be written:

F ≫
6
√

πρ

Nλ

√
ln (Nλ/ρ)

.

The 1D time-dependent simulation code FELO [12], which was used to generate the results

of section 2, is now used to model a RAFEL with a very low feedback factor of F = 10−5. An

FEL parameter of ρ = 2.9× 10−3 was used with a peak number of electrons per wavelength

of Nλ ≈ 6.2× 105. The condition on the feedback factor given above is then F ≫ 1.13× 10−8

which is seen to be satisfied. While these parameters are typical for an amplifier FEL operating

with peak current of 2.4 kA at photon energy of 100 eV, they may be considered more general

due to the universal scaling.

The scaled interaction length of the undulator amplifier was z̄ = 8.67 and the system

simulated for 100 cavity passes with a small cavity detuning of δc = 2.0 defined in units of

the retarded time parameter z̄1 = 4πρ(z/β‖ − ct)/λ where the resonant electron axial velocity

is v‖ = cβ‖ [12]. The scaled interaction length necessary for SASE saturation, i.e. without

feedback, using these parameters is z̄ ≃ 14 . This SASE case was simulated 200 times to enable

comparison between the averaged SASE results and those of the RAFEL.

5.1. SASE results

The root mean square (rms) linewidth over 200 simulations for the SASE case was 〈σλ/λ〉 =
2.77× 10−3 with an rms pulse length 〈σz̄1〉 = 14.01 giving a rms time–bandwidth product of

〈1ν1t〉 = 5.9. The rms peak intensity 〈|A|2peak〉 = 2.2. A typical saturation pulse is shown in

figure 20, this pulse being chosen as the time–bandwidth product,1ν1t = 6.0, is approximately

that of the mean for the SASE simulations.

5.2. Very low feedback RAFEL results

The results for the very low feedback RAFEL show a significant improvement in the quality

of the pulse output with respect to SASE. The rms linewidth is reduced to 〈σλ/λ〉 ≈ 1.1× 10−3
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Figure 21. The scaled power of the output pulse from the low feedback

RAFEL simulation with feedback fraction F = 1× 10−5. The pulse shown has a

time–bandwidth product of 1ν1t ≈ 1.3.

and a shorter rms pulse length of 〈σz̄1〉 ≈ 8.1. The mean time–bandwidth product (for the 80

post-saturation passes) is reduced from the SASE result by a factor ≈ 4.6 to 〈1ν1t〉 = 1.35.

The mean peak power was not significanly changed at 〈|A|2peak〉 ≈ 1.9.

The increase in quality of the pulse output is evident from comparison of the SASE result

of figure 20 with 21, which plots the scaled output power of a pulse with a time–bandwidth

product of 1ν1t ≈ 1.3, close to the mean value.
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function of cavity pass number are: the pulse peak intensity |A|2, the rms spectral

width σλ/λ, the rms pulse length σz̄1 and the time–bandwidth product 1ν1t .

A feedback fraction of F = 10−5 was used.

The evolution of the scaled pulse peak power |A|2, the rms spectral width σλ/λ, the rms

pulse length σz̄1 and the time–bandwidth product 1ν1t , are plotted from start-up through to

deep saturation in figure 22. Despite the low feedback fraction, saturation is seen to occur after

around ten cavity passes.

6. Conclusion

The VUV-FEL proposed for the UK 4GLS facility and based on a high-gain amplifier operating

with a small feedback, the so-called RAFEL, has been shown via full 3D simulations to provide

a relatively robust design which is not particularly sensitive to effects such as degradation

of mirror reflectivity. Due to the small amount of feedback, the design allows for the rapid

development of temporally coherent radiation pulses that are close to Fourier transform limited.

Furthermore, the length of the pulses may be varied via cavity length detuning. The 3D

modelling has been made possible by using the FEL simulation code Genesis 1.3 with the optics

simulation package, OPC. It was shown that the original parameters of the CDR, developed

using only a relatively simple model of the cavity, provided a working design that was close to

the optimum.

The 3D capability of the OPC code allows proper modelling of the hole outcoupled cavity

and provides important information about the development of the transverse modes. Calculation

of both transverse profile within the cavity and in the far-field assist in choice of its geometry

and outcoupling hole size. This initial modelling suggests that the VUV-FEL will need two or

three outcoupling mirrors with hole radii 1.5–2.5mm to cover the 3–10 eV operational range of

photon energies. However, further work will be required in this area to refine the design.

Engineering studies are ongoing to investigate the effects upon the cavity mirrors of the

high average power of the VUV-FEL. The output power ranges from ∼300W, for operation
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at 4 1

3
MHz, to potentially ∼ 90 kW for operation at the maximum ERL SCRF frequency of

1.3GHz. The power distribution on the DS mirror, as shown in figure 7, has been converted into

an input power distribution for finite element simulations of the mirror, assuming a reflectivity

of 60%. Although at the minimum repetition rate of 4 1

3
MHz the total absorbed power is only

24W, and the simulation assumes that the mirror is mounted in a water cooled copper block, the

absorbed power is sufficient to cause a temperature rise of up to 80K and a significant change

in mirror RoC, the effects of which are under investigation through importing the distorted

surface of the mirror into the OPC code. It is likely that counter-measures such as a deformable

mirror surface or cryogenic cooling will be required and that it will be extremely challenging to

increase the repetition rate far beyond 4 1

3
MHz.

A preliminary study in 1D using a very low cavity feedback factor has also shown that

a low feedback RAFEL may generate radiation pulses of greatly improved quality than that

possible using SASE. When the power feedback is significantly greater than the equivalent shot-

noise power, temporal coherence was shown to develop rapidly as a function of cavity round-

trip number giving a time–bandwidth product of ∼1.3 for a cavity power feedback fraction of

F = 10−5. This was nearly a factor of five better than that of the equivalent SASE result. The

method of attaining the low feedback factors were not discussed, however the fact that they

may be so small indicates that there is significant scope in extending the low feedback RAFEL

concept into the XUV and possibly further. The possibility of combining harmonic generation

methods [26]–[29] and RAFEL also exists and these exciting possibilities will be the subject of

future research.
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