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A Landau free energy is derived for the weak segregation regime~WSR! of melts belonging to a
very general class of statistical multiblock copolymers, referred to as ‘‘multiple segment-type
statistical multiblock copolymers.’’ Copolymer chains in this class consist of sequences of up to
M>2 chemically different types of segments, organized into sequences of blocks of varying lengths
~molecular weights!. The possible sequences of blocks that are encountered in the copolymer chains,
as far as their type is concerned, are described by a first-order Markov process, while the block
molecular weight distributions of theseM types of blocks are completely arbitrary. The number of
blocks per chain is assumed to be large. This class of copolymers is sufficiently general to
encompass all industrial relevant bulk statistical multiblock copolymers, such as all known
thermoplastic elastomers. The particular free energy considered is just one realization of an even
more general Landau free energy which is applicable to the WSR of melts of all conceivable
copolymers, including homopolymers and all possible blends. The derivation of this Landau free
energy is given in Appendix A. ©1998 American Institute of Physics.@S0021-9606~98!50943-9#

I. INTRODUCTION

Statistical multiblock copolymersalso referred to as
polydisperse multiblock copolymersare an important class of
industrially relevant synthetic materials. They are increas-
ingly being used as adhesives, compatibilizers, emulsifiers,
and in their bulk form as thermoplastic elastomers~TPE!. As
the properties of these materials crucially depend on their
morphology, both in the molten and solid state, it is in par-
ticular their phase-behavior or thermodynamics which is im-
portant to understand. This subject has received considerable
attention during the last few years in the academic world.1–8

The adjectivesstatistical or polydisperserefer to both
the fact that the overall molecular weight of a chain usually
will vary from chain to chain and to the fact that the molecu-
lar weight of the various chemically distinct types of blocks
that makeup thesemultiblock copolymer chains will vary
from block to block within each chain. However, the empha-
sis in this paper will lie on the latter form ofpolydispersity.
The number of chemically distinct types of blocks in prin-
ciple can be arbitrary, but the focus in the theoretical litera-
ture up to now, has been on the important class of so-called
binary statistical multiblock copolymers, i.e., copolymer sys-
tems where the chains comprise of only two chemically dif-
ferent types of blocks. Many of the commercial available
thermoplastic elastomers, such as the well-known polyester-
co-polyether family of TPE’s~e.g., PBT-co-PTHF!, fall into
this category.

So far basically two important classes of binary statisti-

cal multiblock copolymers were considered, namely uncor-
related or ideal random copolymers and so-called correlated
random copolymers.2,3,7 In the latter class the correlation in
the sequences of both types of segments that makeup the
copolymer chains is defined by means of a first-order Mar-
kov process, i.e., via a 232 ~stochastic! matrix of transition
probabilitiesp

=
, with pi j defined as the probability of occur-

rence of a segment of typej given that the preceding segment
is of type i. In the former class, on the other hand as the
name implies, these sequences are uncorrelated
~Bernoulli—or zeroth-order Markov process!. It is clear that
this ideal binary random copolymer system is just a special
example of a correlated binary random copolymer system,
namely one wherepAA5pBA[p and pAB5pBB[q[12p.
A particularly nice way of treating this class of correlated
binary random copolymers was introduced by Fredrickson
et al.2 They showed that this class can be parametrized by
two parameters, namely the overallA-segment or A-
monomer fractionf and the parameterl[pAA1pBB21, be-
ing the only nontrivial eigenvalue ofp

=
~the other one is 1!.

This parameterl varies between21, corresponding to an
alternatingAB-copolymer and 1, corresponding to a blend of
A- and B-homopolymers. The region21,l,0 encom-
passes multiblock copolymers with a tendency towards alter-
nation, while the region 0,l,1 harbors multiblock copoly-
mers with a tendency towards blockiness. Finally the
midpointl50 describes an ideal random copolymer. Binary
statistical multiblock copolymers for which the average mo-
lecular weight of both types of blocks is not too small cor-
respond to positivel close to 1. In that case both blocka!Electronic mail: Han.Slot@DSM-group.com
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molecular weight distributions are always of the exponential
or Flory type,16 i.e.

Pi~n![
1

n̄i
expF2

n

n̄i
G ~ i 5A,B!, ~1!

where n̄i is the average molecular weight of the blocks of
type i. Such a distribution has apolydispersity Di[ni

2/n̄i
2

21, equal to 1~corresponding to the more familiarM̄w /M̄n

of 2!. This situation is typically encountered when these bi-
nary statistical multiblock copolymers are synthesized via a
polycondensation polymerization processstarting from a
mixture ofA- andB-monomers. However, in the synthesis of
many of the industrial relevant statistical multiblock copoly-
mers, the initial mixture or initial feedstock will also contain
prepolymers of theA- or B-type with a possible narrow mo-
lecular weight distribution which are to be build into the
copolymer chains. This can lead to block molecular weight
distributions in the final multiblock copolymer system which
will deviate from the above mentioned Flory-type distribu-
tion. This situation is of course not limited to binary statisti-
cal multiblock copolymers and can also occur when the co-
polymer chains consist of three or more chemically different
types of blocks, a class which we will refer to from here on
as so-calledmultiple segment-typestatistical multiblock co-
polymers. It is this generic situation which we want to ad-
dress in the sequel. The rest of the paper is organized as
follows. In Sec. II we will describe acoarse grainedmodel
for these multiple segment-type statistical multiblock co-
polymer melts which is sufficiently general to encompass all
industrial relevant bulk statistical multiblock copolymer sys-
tems. In this model the copolymer chains are allowed to
consist of sequences of up toM>2 chemically different
types of blocks of varying molecular weight, where the pos-
sible sequences are described via a first-order Markov pro-
cess. Then, in Sec. III, we will develop a Landau free energy
appropriate for the description of theweak segregation re-
gime~WSR! of these multiple segment-type statistical multi-
block copolymer melts. In the WSR, i.e., just inside the in-
homogeneous region in parameter space where the deviation
from homogeneity is still small, this Landau free energy can
be expanded in a functional Taylor series in so-calledseg-
mental order-parameter fields. These segmental order-
parameter fields, which are a measure of this deviation from
homogeneity, can be approximated in the WSR by simple
sinusoidal functions of position in real space. It is in this
so-calledfirst harmonic approximation~FHA!, that we will
consider the above mentioned Landau free energy. The co-
efficients in the Landau expansion are calledvertices, and it
is these vertices which we need to determine. These vertices,
as was shown by Leibler for the first time in his seminal
paper on diblock melts,19,20 can be written in terms of so-
called ideal intrachain correlation functions, which measure
the spatial correlations in density of the various types of
monomers in the ideal copolymer melt, i.e., when the inter-
actions between the different types of monomers have been
switched off. For the systems of interest in this paper, it
proves to be sufficient to truncate the Landau expansion after
the fourth-order terms. The main part of Sec. III, therefore,
will be devoted to the detailed calculation of the second-,

third-, and fourth-order ideal intrachain correlation functions
in the FHA. Of course it is known that such a Landau free
energy expansion has a limited validity, especially when the
FHA is adopted. Its validity is restricted to the WSR and in
particular to the immediate vicinity of the locus in the phase
diagram where the homogeneous phase becomes unstable.
Even in that region the use of the FHA excludes the possi-
bility of studying the occurrence of certain so-callednon-
classical ~inhomogeneous! phases such as the gyroid
phase,10 that were observed in diblock copolymer melts. For
the description of such phases it is necessary to consider
contributions to the Landau free energy arising from higher
Fourier modes~higher harmonics! in the expansions of the
segmental order-parameter fields.11 Although strictly speak-
ing the approach which is followed in the present paper goes
in fact beyond the FHA, in the sense that certain higher
harmonics are accounted for in the expression for the free
energy, Eq.~23! in Sec. III, this is not sufficient to describe
these nonclassical phases. For these multiple segment-type
statistical multiblock copolymer melts it is to be expected12

that the use of the FHA even becomes more restrictive if the
repulsion between unlike blocks were to become larger, es-
pecially for systems withM.2. But, in this so-calledinter-
mediate to strong segregation regime~ISR/SSR! the Landau
approach is totally inappropriate and other approaches are
asked for such as theself-consistent field theory~SCFT!
method of Matsen en Schick.13 It is, however, at present
unclear how for instance this last method, which has up to
now been formulated in particular for diblock and triblock
copolymers melts, can be extended to the class of copolymer
melts that is of interest here. With this Landau free energy
one is thus able to calculate a part of the mean-field phase
diagram for multiple segment-type statistical multiblock co-
polymer melts with specific but arbitrary block molecular
weight distributions. In a forthcoming publication14 this is
done for the case of binary statistical multiblock copolymer
melts (M52) with Schultz–Zimm block molecular weight
distributions, where more specifically the influence of poly-
dispersity is studied. The particular Landau free energy here
obtained is in fact a specific example of a much more general
Landau free energy, which can be used to describe the WSR
of all conceivable classes of copolymer melts, including ho-
mopolymer melts and their blends. This general Landau free
energy is derived in detail in Appendix A. Finally, some
concluding remarks are given in last section, Sec. IV. In
addition there is a second appendix where characteristic
functions of multivariate Gaussian distribution functions are
calculated, which we will be needing in Sec. III and in Ap-
pendix A.

II. COARSE GRAINED MODEL FOR A MULTIPLE
SEGMENT-TYPE STATISTICAL MULTIBLOCK
COPOLYMER MELT

In this section we will present a coarse grained model for
multiple segment-type statistical multiblock copolymer
melts, sufficiently general to encompass all industrial rel-
evant bulk statistical multiblock copolymer systems. As this
model is just a particular realization of a model which is
described in Appendix A for a general copolymer melt, we
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will restrict the discussion in this section mainly to the ap-
propriate description of the various different species of
chains which will be present in the system~specification of
the sequence distribution! and refer to Appendix A for other
details of the model. In this particular model the copolymer
chains consist of sequences of up toM>2 chemically dif-
ferent types of segments, labeled by the variablea
P$1...,M % and organized into a sequence of blocks of vary-
ing lengths~molecular weights!. The length of a block will
be denoted by the~continuous! variable n. The variables
which is used in Appendix A to label the various species of
chains present in the system, is thus in this particular model
a condensed notation for a given sequence of block molecu-
lar weights of a particular type, i.e.

s[$~n1 ,a1!,~n2 ,a2!,...~nNb
,aNb

!%, ~2!

where it is assumed that each copolymer chain consists of a
fixed number of blocksNb , which will be taken sufficiently
large so that the final results are not influenced by this as-
sumption. Next to that the theory becomes particularly
simple in this limit. The block molecular weight distributions
of theseM types of blocks will be takenarbitrary and sta-
tistically independent, i.e., described by non-negative func-
tions P1(n),...,PM(n) with

E
0

`

dnPa~n![1, ;a. ~3!

It is clear form the notation that we will employ a continuous
representation for the copolymer chains, i.e., chains will be
represented by continuous curves in three-dimension~3D!.
So, the various blocks@see Eq.~2!# within a chain will be
discriminated but not the segments which makeup these
blocks. The possible sequences of blocks one encounters in
the various chains of the system, as far as their identity~type!
is concerned, will be described by a first-order Markov pro-
cess, i.e., a stochastic process specified by the followingM
3M matrix of transition probabilities

3
0 w12 ¯ w1M

w21 0 ¯ w2M

• • ¯ •

• • ¯ •

• • ••0 wM21,M

wM1 wM2 ••wM ,M21 0

4 , ~4!

wherewab is the probability that the next block along the
chain is of typeb given that the current block is of typea.
This matrix w= will in general be asymmetric. By construc-
tion the diagonal matrix elements are zero because a block in
this description is the basic unit and, therefore, a block of a
given type can only be followed by a block of one of the
other types. Furthermore the sum of the matrix elements in
each row will be equal to one, because each block in a chain
is always supposed to be followed by another one~at least in
the Nb→` limit !. This means that there will only beM (M
22) independent matrix elements. This description of the
possible block sequences~chains! in terms of a first-order
Markov process for their identities in combination with sta-

tistically independent distributions for their lengths is general
enough to encompass all relevant industrial statistical multi-
block copolymer systems. As in general the matrix elements
of w= will be determined by the specifics of the underlying
polymerization process, we will consider them as input to the
theory which is developed here. Similarly theM molecular
weight distributions are arbitrary in the sense that we will
leave the functionsP1(n),...,PM(n) unspecified in this de-
velopment. Their statistical independence is barely an as-
sumption, because from a chemical point of view, correla-
tions in sequence will only occur at the monomer level. In
general the reactivity of a monomer at a chain end is at most
influenced by one or two preceding monomers. At the level
of the blocks these correlations will have disappeared, espe-
cially when the various types of blocks have an average
block molecular weight which is not too small. The number
rs of chains of types per unit volume will be proportional to
the probability of realizing the particular sequence corre-
sponding tos @Eq. ~2!#, i.e.

rs[
1

Nb(awa
0 n̄a

wa1

0 Pa1
~n1!

3wa1a2
Pa2

~n2!wa2a3
¯waNb21aNb

PaNb
~nNb

!, ~5!

where the factor in front ensures that the overall segment
density is unity, i.e.

(
s

rsNs[
1

Nb(awa
0 n̄a

3(
a1

(
a2

¯(
aNb

E
0

`

dn1¯E
0

`

dnNb
wa1

0

3Pa1
~n1!wa1a2

¯waNb21aNb
PaNb

~nNb
!

3H (
k51

Nb

nkJ 51. ~6!

In these expressionsn̄a denotes the average block molecular
weight ~average length! of the blocks of typea andwa

0 the
so-called invariant probability of encountering a block of
typea in a chain. This last quantity will be given by theath
component of the eigenvector of the transposed matrix of
transition probabilitiesw= T belonging to eigenvalue 1, a result
which is well known from the theory of Markov chains.15

We will end this section by introducing two quantities,
which we will need in the next section. The first quantity is
the overall fractionf a of segments of typea in the system
@see Eq.~A4!#. This quantity can be expressed in terms of the
invariant probabilities$wa

0; a51,...,M % and the average
block molecular weights$n̄a ; a51,...,M % in the following
way:

f a[
wa

0 n̄a

(gwg
0n̄g

. ~7!

In the definition of the ideal intrachain correlation functions
@see Eqs.~A40! and ~A44!–~A47!# the Ising-type variable
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ss j
a appears, which indicates whether segmentj in a chain of

speciess is of type a. In the present model this quantity is
given by

ss j
a [(

k51

Nb

da,akH uS j 2 (
l 51

k21

nl D 2uS j 2(
l 51

k

nl D J , ~8!

with u( j ) a Heaviside step function. The function within
brackets is a block function, which is 0 everywhere except
for thekth block where it attains the value 1. The Kronecker
delta symbol, in combination with the sum over theNb

blocks, simply selects those blocks which are of typea. With
this last result we are in a position to determine the Landau

free energy for such a melt of multiple segment-type statis-
tical multiblock copolymers. This forms the subject of the
next section.

III. LANDAU FREE ENERGY FOR A MELT OF
MULTIPLE SEGMENT-TYPE STATISTICAL
MULTIBLOCK COPOLYMERS IN THE FIRST
HARMONIC APPROXIMATION

As was mentioned in the introduction, the most general
form of the Landau free energy for these copolymer melts is
derived in Appendix A and is given by the final result~A60!,
i.e., by

FL

V
[ min

$ma%8
H 1

2(
ab

(
q

@ ḡab
21~q!22x̃ab#ma~qI !mb~2qI !2 1

6(
abg

(
dej

(
q1q2

ḡabg~qI 1 ,qI 2 ,2qI 12qI 2!ḡgj
21~ uqI 11qI 2u!

3ḡad
21~q1!ḡbe

21~q2!md~2qI 1!me~2qI 2!mj~qI 11qI 2!1 1
24 (

abgd
(

ejmn
(

q1q2q3
H 2ḡabgd~qI 1 ,qI 2 ,qI 3 ,2qI 12qI 22qI 3!

3ḡae
21~q1!ḡbj

21~q2!ḡgm
21~q3!ḡdn

21~ uqI 11qI 21qI 3u!me~2qI 1!mj~2qI 2!mm~2qI 3!mn~qI 11qI 21qI 3!1@12d~qI 11qI 2!#

3(
kl

ḡabk~qI 1 ,qI 2 ,2qI 12qI 2!ḡkl
21~ uqI 11qI 2u!ḡgdl~qI 3 ,2qI 12qI 22qI 3 ,qI 11qI 2!ḡae

21~q1!ḡbj
21~q2!ḡgm

21~q3!

3ḡdn
21~ uqI 11qI 21qI 3u!me~2qI 1!mj~2qI 2!mm~2qI 3!mn~qI 11qI 21qI 3!1@12d~qI 11qI 3!#(

kl
ḡabk~qI 1 ,qI 3 ,2qI 12qI 3!

3ḡkl
21~ uqI 11qI 3u!ḡgdl~qI 2 ,2qI 12qI 22qI 3 ,qI 11qI 3!ḡae

21~q1!ḡbj
21~q3!ḡgm

21~q2!ḡdn
21~ uqI 11qI 21qI 3u!me~2qI 1!mj~2qI 3!

3mm~2qI 2!mn~qI 11qI 21qI 3!1@12d~qI 21qI 3!#(
kl

ḡabk~qI 2 ,qI 3 ,2qI 22qI 3!ḡkl
21~ uqI 21qI 3u!

3ḡgdl~qI 1 ,2qI 12qI 22qI 3 ,qI 21qI 3!ḡae
21~q2!ḡbj

21~q3!ḡgm
21~q1!ḡdn

21~ uqI 11qI 21qI 3u!me~2qI 2!mj~2qI 3!

3mm~2qI 1!mn~qI 11qI 21qI 3!

1 1
24 (

abgd
(

ejmn
(
q1q2

gab~q1!ggd~q2!ḡae
21~q1!ḡbj

21~q1!ḡgm
21~q2!ḡdn

21~q2!me~2qI 1!mj~qI 1!mm~2qI 2!mn~qI 2!

1 1
24 (

abgd
(

ejmn
(
q1q2

gag~q1!gbd~q2!ḡae
21~q1!ḡbj

21~q2!ḡgm
21~q1!ḡdn

21~q2!me~2qI 1!mj~2qI 2!mm~qI 1!mn~qI 2!

1 1
24 (

abgd
(

ejmn
(
q1q2

gad~q1!gbg~q2!ḡae
21~q1!ḡbj

21~q2!ḡgm
21~q2!ḡdn

21~q1!me~2qI 1!mj~2qI 2!mm~qI 2!mn~qI 1!J , ~9!

where ma(qI ) is the ~Fourier-transformed! order-parameter

field associated with segments of typea. Due to the assump-
tion of incompressibility~see Appendix A!, we have that
(ama(qI )[0 and so onlyM21 fields are independent,

which we choose to bem1(qI ),...,mM21(qI ). The minimiza-

tion, implied in Eq. ~9!, is over theseM21 independent
fields with the remaining segmental order-parameter field

mM(qI ) replaced by2(a51
M21ma(qI ). The quantitiesḡab(q),

ḡabg(qI 1 ,qI 2 ,2qI 12qI 2) and ḡabgd(qI 1 ,qI 2 ,qI 3 ,2qI 12qI 2

2qI 3) are, respectively, the earlier mentioned second-, third-,

and fourth-order ideal intrachain correlation functions. The
quantitiesgab(q1)ggd(q2) etc., on the other hand, are a part
of the so-callednonlocal terms, that are typical for polydis-
perse copolymer melts and for which one can show in gen-
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eral that they vanish once the number of segment types ex-
ceeds the number of chain types in the system.3 These
various quantities are defined in Eqs.~A40!, ~A43!, and
~A45! in combination with Eqs.~A46! and ~A47!. To reca-
pitulate

ḡab~q![(
s

rsgab
s ~qI ,2qI !,

ḡabg~qI 1 ,qI 2 ,2qI 12qI 2![(
s

rsgabg
s ~qI 1 ,qI 2 ,2qI 12qI 2!,

~10!

ḡabgd~qI 1 ,qI 2 ,qI 3 ,2qI 12qI 22qI 3!

[(
s

rsgabgd
s ~qI 1 ,qI 2 ,qI 3 ,2qI 12qI 22qI 3!,

gab~q1!ggd~q2![(
s

rsgab
s ~qI 1 ,2qI 1!ggd

s ~qI 2 ,2qI 2!

with

gab
s ~qI 1 ,qI 2![E

0

Ns
diE

0

Ns
d j s si

a ss j
b e~a2qI 1•qI 2/6!u i 2 j u, ~11!

gabg
s ~qI 1 ,qI 2 ,qI 3!

[E
0

Ns
diE

0

Ns
d jE

0

Ns
dk ssi

a ss j
b ssk

g

3e~a2/6!$qI 1•qI 2u i 2 j u1qI 1•qI 3u j 2ku1qI 1•qI 3u i 2ku%, ~12!

and

gabgd
s ~qI 1 ,qI 2 ,qI 3 ,qI 4!

[E
0

Ns
diE

0

Ns
d jE

0

Ns
dkE

0

Ns
dl ssi

a ss j
b ssk

g ssl
d

3e~a2/6!$qI 1•qI 2u i 2 j u1qI 1•qI 3u i 2ku1qI 1•qI 4u i 2 l u%

3e~a2/6!$qI 2•qI3uj2ku1qI2•qI4uj2lu1qI3•qI4uk2lu%. ~13!

In Eqs.~11!–~13! a denotes the common statistical segment
length. Finally the quantityx̃ab which appears in the second-
order contribution toFL , is a generalized Floryx-parameter,
defined in Eq.~A13!. For the following discussion it is con-
venient to formally rewrite Eq.~9! as a multivariate expan-
sion in the independent segmental order-parameter fields
m1(qI ),...,mM21(qI ). This can be achieved by applying to

Eq. ~9! the transformationma(qI )→(a51
M21Taama(qI ) (a

51,...,M ) where Taa is an element of the followingM
3(M21)-matrix:

3
1 0 . . . 0

0 1 •

• • •

• • •

• 1 0

0 . . . 0 1

21 . . . 21 21

4 . ~14!

In the expressions to come we will adopt the convention that
Roman indices run from 1 toM21, in contrast with Greek
indices which run from 1 toM. The formal result of the
application of the above transformation to Eq.~9! can be
written as

FL

V
[min

$ma%
H S 1

2! D(ab
(

q
Gab

~2!~q!ma~qI !mb~2qI !

1S 1

3! D(abc
(

q1q2q3

Gabc
~3! ~qI 1 ,qI 2 ,qI 3!

3ma~qI 1!mb~qI 2!mc~qI 3!

1S 1

4! D (
abcd

(
q1q2q3q4

Gabcd
~4! ~qI 1 ,qI 2 ,qI 3 ,qI 4!

3ma~qI 1!mb~qI 2!mc~qI 3!md~qI 4!J . ~15!

The coefficientsGab
(2) , Gabc

(3) , andGabcd
(4) in this expression are

known as vertices and their specific form can be inferred
from Eq. ~9!. The second-order vertexGab

(2)(q) is given by

Gab
~2!~q![(

ab
@ ḡab

21~q!22x̃ab#TaaTbb , ~16!

and the third-order vertexGabc
(3) (qI 1 ,qI 2 ,qI 3) by

Gabc
~3! ~qI 1 ,qI 2 ,qI 3!

[2 (
abg

(
a8b8g8

d~qI 11qI 21qI 3!ḡa8b8g8~qI 1 ,qI 2 ,qI 3!

3ḡa8a
21

~q1!ḡb8b
21

~q2!ḡg8g
21

~q3!TaaTbbTgc , ~17!

and finally the fourth-order vertexGabcd
(4) (qI 1 ,qI 2 ,qI 3 ,qI 4) @see

also Eq.~A45!# by
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Gabcd
~4! ~qI 1 ,qI 2 ,qI 3 ,qI 4![ (

abgd
(

a8b8g8d8
Fd~qI 11qI 21qI 31qI 4!H 2ḡa8b8g8d8~qI 1 ,qI 2 ,qI 3 ,qI 4!1@12d~qI 11qI 2!#

3(
kl

ḡa8b8m~qI 1 ,qI 2 ,2qI 12qI 2!ḡmn
21~ uqI 11qI 2u!ḡg8d8n~qI 3 ,qI 4 ,2qI 32qI 4!1@12d~qI 11qI 3!#

3(
kl

ḡa8b8m~qI 1 ,qI 3 ,2qI 12qI 3!ḡmn
21~ uqI 11qI 3u!ḡg8d8n~qI 2 ,qI 4 ,2qI 22qI 4!1@12d~qI 11qI 4!#

3(
kl

ḡa8b8m~qI 1 ,qI 4 ,2qI 12qI 4!ḡmn
21~ uqI 11qI 4u!ḡg8d8n~qI 2 ,qI 3 ,2qI 22qI 3!J 1d~qI 11qI 2!

3d~qI 31qI 4!ga8b8~q1!gg8d8~q3!1d~qI 11qI 3!d~qI 21qI 4!ga8g8~q1!gb8d8~q2!1d~qI 11qI 4!

3d~qI 21qI 3!ga8d8~q1!gb8g8~q2!G ḡa8a
21

~q1!ḡb8b
21

~q2!ḡg8g ~q3!ḡd8d
21

~q4!TaaTbbTgcTdd . ~18!

From Eq. ~16! it follows that Gab
(2)(q)5Gba

(2)(q), which
means that the set of second-order vertices forms a symmet-
ric matrix. Such a matrix has real eigenvalues and can be
diagonalized by an orthogonal matrixS= (q), i.e., a matrix for
which S=21(q)[S= T(q), whose columns are the eigenvectors
of G (2)(q). So, if we introduce a new set of segmental order-
parameter fields$m̃a(qI )% defined by

m̃a~qI ![(
b

Sba~q!mb~qI !, ~19!

which we will refer to asmixedsegmental order-parameter
fields, then Eq.~15! can be transformed into

FL

V
[min

$m̃a%
H ~ 1

2!!(
a

(
q

ga
~2!~q! m̃a~qI !m̃a~2qI !

1~ 1
3!!(

abc
(

q1q2q3

G̃abc
~3! ~qI 1 ,qI 2 ,qI 3!

3m̃a~qI 1!m̃b~qI 2!m̃c~qI 3!

1~ 1
4!!(

abcd
(

q1q2q3q4

G̃abcd
~4! ~qI 1 ,qI 2 ,qI 3 ,qI 4!

3m̃a~qI 1!m̃b~qI 2!m̃c~qI 3!m̃d~qI 4!J , ~20!

with $ga
(2)(q); a51,...,M21% the eigenvalues ofG= (2)(q).

This last result forFL shows that these$m̃a(qI )% for eacha

and eachqI , can be interpreted as a kind of quasi-independent

normal modesof the system, similar say to phonons in real
crystals. These modes are only independent as far as the
second-order contribution toFL is concerned, because
through the third- and fourth-order terms they are coupled to
each other.

The general idea of the Landau theory of phase
transitions,17 as applied to these copolymer systems, is that
for small values of thex̃-parameters all the eigenvalues
$ga

(2)(q); a51,...,M21% will be positive. In that case the
second-order contribution will be dominant and we may for-

get the higher order contributions for the moment. If all these
eigenvalues are positive then it is clear that the minimum of
FL is found form̃a(qI )[0, ;a, and;qI , which also implies

thatma(qI )[0, ;a, and;qI . A result which follows from the

fact that S= (q) is a nonsingular matrix. This minimum by
definition corresponds to the homogeneous phase of the sys-
tem. If now the variousx̃-parameters are increased, for in-
stance, by lowering the temperature when one is dealing with
a system of the UCST~upper critical solution temperature!
type, one of the eigenvaluesg l

(2) for someq* could pass
through zero at some stage and eventually become negative.
In the Landau theory this so-called soft mode signals the
occurrence of a phase transition in which the symmetry of
the homogeneous phase will be broken. Due to its rotational
invariance, it is an instability of this high-symmetry phase
involving all modes associated with a spherical shell of ra-
diusq* in Fourier space. The corresponding mixed segmen-
tal order-parameter fieldm̃l(qI )[(aSal(q)ma(qI ) is also

known as thestrongly fluctuating order-parameter field.4

Whenever such an instability occurs, it is of course important
also to consider the higher-order terms inFL , as they will be
necessary to ensure that the new minimum ofFL is finite.
These same higher-order terms will also causeq* to shift
beyond the transition, asq* has to follow from the condi-
tions (]FL /]q)uq5q

*
50, (]2FL /]q2)uq5q

*
.0. The as-

sumption that only one of the eigenvalues ofG= (2)(q) be-
comes zero at a some stage when say the temperature is
lowered of a UCST system is physically correct, as there is
no reason to assume that there are degeneracies in the spec-
trum of G= (2)(q), neither caused by symmetry nor accidental
by nature. Although one cannot exclude the possibility that
other eigenvalues will pass through zero at some later stage,
we will assume that when that happens it will be at critical
points in thex̃-parameter space which are located at a finite
distance from the critical point where the homogeneous
phase becomes unstable. As the low-symmetry phase in gen-
eral will be space periodic, the sums over theq’s in Eq. ~20!
will run over some appropriate reciprocal lattice. To dis-
criminate between a generalqI -vector and an element of such
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a reciprocal lattice, we will use a capitol vectorQI for the

latter. From the above discussion it is clear that infinitesi-
mally beyond the phase transition allm̃l(QI ) with uQI u5q*
will acquire a nonzero value, whereas all otherm̃a(QI ) will

remain zero. In the Landau theory each member of this par-
ticular set$m̃l(QI ); uQI u5q* % is referred to as aprimary or-

der parameter, while all other modesm̃a(QI ), for which

ga
(2)(Q) remains positive, are referred to assecondary order

parameters.
The third- and fourth-order terms in the free energy not

only lead to a coupling between the primary order param-
eters, but also to a coupling between the primary and the
secondary order parameters. This last coupling implies that
as a consequence of the fact that the primary order param-
eters will become nonzero beyond the phase transition, this
will also happen with the secondary ones, despite the fact
that the corresponding second-order terms inFL favor a zero
value for these secondary order parameters. As we do not
want to go beyond fourth-order terms in the primary order
parameters in the expansion ofFL , the only relevant cou-
pling terms are those third-order terms which are linear in the
secondary order parameters. These terms can collectively be
written in the following way:

1
2(

a
(
Q

La
l ~Q! (

uQ2u5q
*

(
uQ3u5q

*

G̃all
~3!~QI ,QI 2 ,QI 3!

3m̃a~QI !m̃l~QI 2!m̃l~QI 3!, ~21!

whereLa
l (Q)[12dald(uQI u2q* ) restricts the sums overa

andQI to those values which belong to secondary order pa-

rameters. Minimization of Eq.~21! combined with quadratic
terms in the secondary order parameters inFL , therefore,
lead to secondary order parameters beyond the transition
which are proportional to bilinear products of primary order
parameters, i.e.,

La
l ~Q!m̃a~QI !

52
La

l ~Q!

2ga
~2!~Q!

(
uQ2u5q

*
(

uQ3u5q
*

G̃all
~3!~2QI ,QI 2 ,QI 3!

3m̃l~QI 2!m̃l~QI 3!. ~22!

With the help of this result we can eliminate the secondary
order parameters in the expansion ofFL and retain only an
expansion in terms of the primary order parameters. This
expansion is given by

FL

V
[min

$m̃l %
H 1

2! (
uQu5q

*

g l
~2!~q* !m̃l~QI !m̃l~2QI !1

1

3! (
uQ1u5q

*
(

uQ2u5q
*

(
uQ3u5q

*

G̃l l l
~3!~QI 1 ,QI 2 ,QI 3!m̃l~QI 1!m̃l~QI 2!m̃l~QI 3!

1
1

4! (
uQI 1u5q

*
(

uQI 2u5q
*

(
uQI 3u5q

*
(

uQI 45q
*

F G̃l l l l
~4!~QI 1 ,QI 2 ,QI 3 ,QI 4!23(

a
(
Q

La
l ~Q!

ga
~2!~Q!

3G̃all
~3!~QI ,QI 1 ,QI 2!G̃all

~3!~2QI ,QI 3 ,QI 4!Gm̃l~QI 1!m̃l~QI 2!m̃l~QI 3!m̃l~QI 4!J . ~23!

Not all of the different space-periodic~crystallinelike! struc-
tures that are conceivable in three-dimensions~230 in total!
are possible candidates for the low-symmetry phase. The rea-
son for this is that, for instance, the third-order terms inFL ,
due to the presence of the Kronecker deltad(QI 11QI 2

1QI 3) @see Eq.~17!#, only couple those three primary order
parameters for which the sum of the corresponding
QI -vectors adds up to zero, i.e., where the threeQI -vectors
form an equilateral triangle. Similarly the fourth-order terms
only couple four modes for which the sum of the four
QI -vectors adds up to zero. It is well-known that such com-
binations of three and/or fourQI -vectors, all having length
q* , only can be constructed in the reciprocal lattice of a
limited set of space-periodic structures, such as the body
centered cubic~BCC!, hexagonally closed packed~HCP!,
and lamellar microphases.20,21 They can also be constructed
in certain quasi-periodic structures, such as the icosahedral
microphase20 or the so-calledrandom wave structure.2 The

example which we will use in the rest of this section is the
BCC ~body centered cubic! structure. So, a WSR low-
symmetry phase will be characterized by

m̃l~QI !Þ0, ;QI PH, ~24!

where H denotes the set ofQI -vectors of lengthq* which
belong to one of these particular reciprocal lattices. For in-
stance for the BCC structure, whose reciprocal lattice is the
FCC ~face centered cubic! lattice, H is the set consisting of
the following twelveQI -vectors:

6
q*
&

~1,1,0!T, 6
q*
&

~21,1,0!T,

6
q*
&

~0,1,1!T, 6
q*
&

~0,1,21!T, ~25!

6
q*
&

~1,0,1!T, 6
q*
&

~1,0,21!T.
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The ansatz Eq.~24! is known as the first harmonic approxi-
mation ~FHA!. Now, each of the primary order parameters
m̃l(QI ) can be characterized by an amplitudeAQI

and a phase

wQI
. As the set of primary order parameters needs to be in-

variant with respect to the symmetry group of the low-
symmetry phase, in particular its point-group symmetry~ro-
tations and reflections!, it follows that the amplitudeAQI

for

eachQI PH should be the same. Therefore, Eq.~24! can be
written more specifically in the following way:

m̃l~QI ![A2

n
A (

QI 8PH

eiwQI d~QI 2QI 8!, ~26!

wheren is the number of elements ofH. The factorA2/n has
been introduced for convenience. Asm̃l(2QI ) should be the
complex conjugate ofm̃l(QI ) @to ensure thatm̃l(xI ) and con-
sequentlyml(xI ) is a real quantity#, it follows that the phase
of 2QI should be minus the phase ofQI , i.e., w2QI

[2wQI
.

Equation ~26! has to be considered as a trial function for
m̃l(QI ) with A, $wQI

% andq* , for a given choice ofH, i.e., a

given symmetry of the low-symmetry phase, as adjustable
parameters whose value follows from a minimization of the
Landau free energy with respect to these parameters. If we
now substitute Eq.~26! into Eq. ~23!, the second-order con-
tribution becomes

FL
~2!

V
[g l

~2!~q* !A2, ~27!

irrespective of the type of low-symmetry phase, i.e., irrespec-
tive of H, while the third-order contribution leads to

FL
~3!

V
[
&zg l

~3!~q* !A3

3nAn
, ~28!

wherez andg l
(3)(q* ) are defined by

z[ (
QI 1PH

(
QI 2PH

(
QI 3PH

d~QI 11QI 21QI 3!ei ~wQI 1
1wQI 2

1wQI 3
!

~29!

and

g l
~3!~q* ![2 (

abg
ḡabg~QI 1 ,QI 2 ,QI 3!

3za l~q* !zb l~q* !zg l~q* ! ~30!

with

za l~q* ![(
b

(
a

ḡab
21~q* !TbaSal~q* !. ~31!

Although it seems from Eq.~30! that g l
(3) , through ḡabg ,

depends onQI 1 , QI 2 , andQI 3 , and therefore, should be a part
of the summand of Eq. ~29!, it follows that
ḡabg(QI 1 ,QI 2 ,QI 3) only depends on the innerproducts of
these threeQI -vectors@see Eqs.~10! and ~12!#. This implies
that ḡabg is independent of the particular triple ofQI -vectors
considered~as long as they form an equilateral triangle! and
consequently thatg l

(3) is independent of the particular struc-
ture.z, on the other hand, does depend on this structure. For
instance in the case of the BCC structure, where one can
show that on the basis of rotational symmetry either all
phases are zero or equal top, z is equal to6 ~1 wheng l

(3)

is negative and2 wheng l
(3) is positive! the number of equi-

lateral triangles ofQI -vectors which can be formed withinH
@Eq. ~25!#, i.e., 6833!. Finally the fourth-order contribu-
tion can be written as

FL
~4!

V
[

A4

6n2 (
QI 1PH

(
QI 2PH

(
QI 3PH

(
QI 4PH

ei ~wQI 1
1wQI 2

1wQI 3
1wQI 4

!g l
~4!~QI 1 ,QI 2 ,QI 3 ,QI 4! ~32!

with

g l
~4!~QI 1 ,QI 2 ,QI 3 ,QI 4![ (

abgd
Fd~QI 11QI 21QI 31QI 4!H 2ḡabgd~QI 1 ,QI 2 ,QI 3 ,QI 4!1(

ln
ḡabl~QI 1 ,QI 2 ,2QI 12QI 2!

3ḡgdn~QI 3 ,QI 4 ,2QI 32QI 4!@12d~QI 11QI 2!#@ ḡln
21~ uQI 11QI 2u!2Yln

l ~ uQI 11QI 2u!#

1(
ln

ḡabl~QI 1 ,QI 3 ,2QI 12QI 3!ḡgdn~QI 2 ,QI 4 ,2QI 22QI 4!@12d~QI 11QI 3!#@ ḡln
21~ uQI 11QI 3u!

2Yln
l ~ uQI 11QI 3u!#1(

ln
ḡabl~QI 1 ,QI 4 ,2QI 12QI 4!ḡgdn~QI 2 ,QI 3 ,2QI 22QI 3!@12d~QI 11QI 4!#

3@ ḡln
21~ uQI 11QI 4u!2Yln

l ~ uQI 11QI 4u!#J 1d~QI 11QI 2!d~QI 31QI 4!gab~q* !ggd~g* !

1d~QI 11QI 3!d~QI 21QI 4!gag~q* !gbd~q* !1d~QI 11QI 4!d~QI 21QI 3!gad~q* !gbg~q* !G
3za l~q* !zb l~q* !zg l~q* !zd l~q* !, ~33!

where the matrixY l(q) which appears in this expression is defined by
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Yab
l ~q![(

a

La
l ~q!

ga
~2!~q!

zaa~q!zba~q!. ~34!

In Eq. ~33! the fourQI -vectors all have the same lengthq*
and only give a contribution whenever their sum is equal to
zero. Therefore, one can show thatg l

(4)(QI 1 ,QI 2 ,QI 3 ,QI 4)
only depends on the mutual orientation of these four vectors,
which can be described by the following three parameters:20

h1[
~QI 11QI 2!2

~q* !2 , h2[
~QI 11QI 3!2

~q* !2 , h3[
~QI 11QI 4!2

~q* !2 .

~35!

These three parameters are not all independent as it follows
that h11h21h354. Thus Eq.~32! can be rewritten as

FL
~4!

V
[

A4

6n2 (
QI 1PH

(
QI 2PH

(
QI 3PH

(
QI 4PH

ei ~wQI 1
1wQI 2

1wQI 3
1wQI 4

!

3g l
~4!~q* ;h1 ,h2 ,h3!, ~36!

with g l
(4)(q* ;h1 ,h2 ,h3) a complete symmetric function of

its last three arguments. If two of these arguments are zero,
then the corresponding set of vectors has the form (QI ,QI ,
2QI ,2QI ) and if only one argument is zero, it has the form
(QI 1 ,2QI 1 ,QI 2 ,2QI 2). The corresponding phase factor for
these situations.g l

(4)(q* ;0,0,4) andg l
(4)(q* ;0,h,42h), is

always equal to11, as oppositeQI -vectors have opposite
phases. A phase factor equal to21 can only occur when all
threeh-parameters are nonzero. For the BCC structure one
can show, using Eq.~24!, that Eq.~36! becomes

FL
~4!

V
[A4H 1

24
g l

~4!~q* ;0,0,4!1
1

3
g l

~4!~q* ;0,1,3!

1
1

6
g l

~4!~q* ;1,1,2!1
1

12
g l

~4!~q* ;0,2,2!J . ~37!

From the structure of Eq. ~33! it is clear that
g l

(4)(q* ;h1 ,h2 ,h3) can be written as

g l
~4!~q* ;h1 ,h2 ,h3![2F1~q* ;h1 ,h2 ,h3!1F2~q* ;h1!

1F2~q* ;h2!1F2~q* ;h3! ~38!

with

F1~q* ;h1 ,h2 ,h3![ (
abgd

ḡabgd~QI 1 ,QI 2 ,QI 3 ,QI 4!

3za l~q* !zb l~q* !zg l~q* !zd l~q* ! ~39!

and

F2~q* ;hÞ0![ (
abgd

(
ln

ḡabl~q* ,q* ,Ahq* !

3ḡgdn~q* ,q* ,Ahq* !@ ḡln
21~Ahq* !

2Yln
l ~Ahq* !#za l~q* !zb l~q* !zg l~q* !

3zd l~q* !,

F2~q* ;0!

[ (
abgd

gab~q* !ggd~q* !za l~q* !zb l~q* !zg l~q* !zd l~q* !,
~40!

where ḡabg(q* ,q* ,Ahq* ) is a shorthand notation for
ḡabg(QI 1 ,QI 2 ,2QI 12QI 2) with uQI 1u5uQI 2u5q* and
\(QI 1 ,QI 2) given by cos@\(QI 1,QI 2)#[h/221. The function
F1(q* ;h1 ,h2 ,h3) can still be simplified further by using
Eqs.~10! and ~13!, which leads to

F1~q* ;h1 ,h2 ,h3!

[ (
abgd

(
s

rsE
0

Ns
diE

0

Ns
d jE

0

Ns
dkE

0

Ns
dl ssi

a ss j
b ssk

g ssl
d

3ea2/6$QI 1•QI 2u i 2 j u1QI 1•QI 3u i 2ku1QI 1•QI 4u i 2 l u%

3e~a2/6!$QI 2•QI 3u j 2ku1QI 2•QI 4u j 2 l u1QI 3•QI 4uk2 l u%

3za l~q* !zb l~q* !zg l~q* !zd l~q* !. ~41!

If we now split the quadruple integral in this expression into
twenty-four nested quadruple integrals, i.e., for which the
integration variables are ordered such asi , j ,k, l etc., one
finds after some rearrangements that this set of nested qua-
druple integrals can be divided into three subsets consisting
of eight nested quadruple integrals, such that all nested qua-
druple integrals within the same subset give the same contri-
bution toF1(q* ;h1 ,h2 ,h3). Thus it follows that:

F1~q* ;h1 ,h2 ,h3![8(
t51

3

(
abgd

(
s

rsE
0

Ns
diE

i

Ns
d jE

j

Ns
dkE

k

Ns
dl ssi

a ss j
b ssk

g ssl
d

3e2a2/6$~ j 2 i !q
*
2

1~k2 j !htq*
2

1~ l 2k!q
*
2 %za l~q* !zb l~q* !zg l~q* !zd l~q* !

[F1~q* ;h1!1F1~q* ;h2!1F1~q* ;h3!. ~42!

By a similar split and rearrangement one can show thatF2(q* ;0) Eq.~40! is equal toF1(q* ;0)12F1(q* ;2), sothat finally
gm

(4)(q* ;h1 ,h2 ,h3) can be written as
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gm
~4!~q* ;h1 ,h2 ,h3![F~q* ;h1!1F~q* ;h2!1F~q* ;h3!,

~43!

whereF(q* ;h) is defined by

F~q* ;h![2F1~q* ;h!1F2~q* ;h!, ~hÞ0!,
~44!

F~q* ;0![2F1~q* ;2!.

With this last result, Eq.~37! for the BCC structure reduces
to

FL
~4!

V
[A4H 1

2
F~q* ;0!1

2

3
F~q* ;1!

1
1

3
F~q* ;2!1

1

3
F~q* ;3!1

1

24
F~q* ;4!J

[A4H 2
2

3
F1~q* ;1!1

2

3
F1~q* ;2!2

1

3
F1~q* ;3!

2
1

24
F1~q* ;4!1

2

3
F2~q* ;1!

1
1

3
F2~q* ;2!1

1

3
F2~q* ;3!1

1

24
F2~q* ;4!J .

~45!

If we consider all the contributions to the Landau free energy
in the first harmonic approximation separately, it is clear that
what is left is to determine the following four functions ofq
and/orh: ḡab(q), g l

(3)(q), ḡabg(q,q,Ahq), and F1(q;h).
Other such functions which appear in the free energy, such
as g l

(2)(q), za l(q), and F2(q;h), can be determined once
we know the first four. Quantities likez Eq. ~29! and the
phase-factors in Eq.~36! have to be determined for each
low-symmetry phase separately. In the rest of this section we
will determine ḡab(q), g l

(3)(q), ḡabg(q,q,Ahq), and
F1(q;h) for the particular system of interest, i.e., the melt of
multiple segment-type statistical multiblock copolymers with
arbitrary block molecular weight distributions.

A. Determination of ḡ ab„q …

The first quantity we will determine is the second-order
ideal intrachain correlation functionḡab(q), which is de-
fined in Eqs.~10! and ~11!. This correlation function can be
written as

ḡab~q![ḡab
o ~q!1ḡba

o ~q!,

with

ḡab
o ~q![(

s
rsE

0

Ns
d jE

j

Ns
d j8ss j

a ss j8
b e2~a2q2/6!~ j 82 j !.

~46!

The meaning ofḡab(q) is that of the Fourier-transform of
the function that describes the spatial correlation between an
a-segment and ab-segment in the copolymer melt in the
absence of interactions between the segments, i.e., in the
ideal copolymer melt where the chains obeyrandom walk
statistics. In Eq.~46! the double integral along the chains has
been split in two in such a way that the continuous
integration-variablesj and j 8 have become ordered. This ex-
plains the superscripto in ḡab

o (q) If we now substitute Eq.
~8! in Eq. ~46! and perform the integrations, it easy to see
that thisḡab

o (q) can be written as the sum of following two
parts:

ḡab
o ~y![dab(

s
rs(

k51

Nb

da,ak
E

nk21
c

nk
c

d jE
j

nk
c

d j8e2y~ j 82 j !

1(
s

rs(
k51

Nb

(
l .k

Nb

da,ak
db,a l

3E
nk21

c

nk
c

d jE
nl 21

c

nl
c

d j8e2y~ j 82 j !, ~47!

where we have introduced the cumulative lengthnk
c

[( l 51
k nl and have changed to the variabley[a2q2/6. The

interpretation of this last result is evident. The first part is the
contribution to theab-correlation from the case where an
a-segmentj and a b-segmentj 8 are located in the same
block, while the second part arises from those cases where
these segments are located in different blocks withj , j 8.
We will now consider each contribution separately. Let us
begin with the first term. By shifting the integration variables
over nk21

c the double integral can easily be calculated

E
0

nk
d jE

j

nk
d j8e2y~ j 82 j !5

nk

y
2

12e2ynk

y2 , ~48!

and, therefore, by using Eq.~5! and the definition of the
‘‘sum overs’’ @see Eq.~6!#, this contribution to Eq.~47! can
be written as

dab(
s

rs(
k51

Nb

da,akS nk

y
2

12eynk

y2 D
[

dab

Nb(gwg
0n̄g

(
k51

Nb

(
a1

(
a2

¯(
aNb

E
0

`

dn1¯

3E
0

`

dnNb
wa1

0 Pa1
~n1!wa1a2

¯waNb21aNb
PaNb

~nNb
!

3Fda,akS nk

y
2

12eynk

y2 D G . ~49!

Now by using the property that each row in the matrix of
transition probabilities Eq.~4! adds up to one and the fact
that each block length distribution is normalized@Eq. ~3!#, it
follows that for a given term in the sum over theNb blocks,
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say thekth one, everyPa l
(nl) with lÞk will be integrated to

one and everywa l 21a l
with l .k will be summed to one.

Therefore, we end up with

dab

Nb(gwg
0n̄g

(
k51

Nb H(
a1

(
a2

¯ (
ak21

wa1

0 wa1a2
¯wak21aJ

3E
0

`

dnPa~n!S n

y
2

12e2yn

y2 D
5dab

f a

n̄a
S n̄a

y
2

12â~y!

y2 D

with â~y![E
0

`

dne2ynPa~n!, ~50!

where we have made use of Eq.~7! in combination with the
fact that the invariant probabilitywb

0 satisfies (gwg
0wgb

[wb
0, so that each term in the sum over theNb blocks sim-

ply gives wa
0, and the whole sum, therefore,Nbwa

0. This
leaves us with the calculation of the second contribution to
Eq. ~47!, which is slightly more involved. By a similar shift
of the integration variables and a little algebra it follows that
this part can be transformed into:

(
s

rs(
k51

Nb

(
l .k

Nb

da,ak
db,a l

E
0

nk
d jE

0

nl
d j8e2y~ j 82 j 1nl 21

c
2nk21

c
!

5(
s

rs(
k51

Nb

(
l .k

Nb

da,ak
db,a l

e2y~nl 21
c

2nk
c
!F E

0

nk
d j e2y~nk2 j !GF E

0

nl
d j8e2y j8G

5
1

Nb(gwg
0n̄g

(
k51

Nb

(
l .k

Nb

(
a1

(
a2

¯(
aNb

E
0

`

dn1¯E
0

`

dnNb
wa1

0 Pa1
~n1!wa1a2

¯waNb21aNb
PaNb

~nNb
!

3H da,ak
db,a lS 12e2ynl

y D ~e2ySm5k11
l 21 nm!S 12e2ynk

y D J . ~51!

From the structure of this last expression it is clear that in the contribution for a given pairl andk in the double sum over the
blocks, all block length distributionsPam

(nm) with m,k andm. l will be integrated again to one, and allwam21am
with m. l

summed again to one. Therefore, this last result can be rewritten as

1

Nb(gwg
0n̄g

(
k51

Nb

(
l .k

Nb H(
a1

(
a2

¯ (
ak21

wa1

0 wa1a2
¯wak21aJ

3F E
0

`

dnkS 12eynk

y D Pa~nk!G (
ak11

waak11F E0

`

dnk11e2ynk11Pak11
~nk11!G¯

3 (
a l 21

wa l 22a l 21F E0

`

dnl 21e2ynl 21Pa l 21
~nl 21!Gwa l 21bF E

0

`

dnl S 12e2ynl

y D Pb~nl !G , ~52!

which is equal to

1

Nb(gwg
0n̄g

(
k51

Nb

(
l .k

Nb S 12â~y!

y D S 12b̂~y!

y D (
ak11

(
ak12

¯ (
a l 21

wa
0@waak11

âk11~y!#

3@wak11ak12
âk12~y!#¯@wa l 22a l 21

â l 21~y!#wa l 21b

[
f a

Nbn̄a
S 12â~y!

y D S 12b̂~y!

y D (
k51

Nb

(
l .k

Nb

@V= ~y! l 2k21
•w= #ab[

f a

Nbn̄a
S 12â~y!

y D S 12b̂~y!

y D (
k51

Nb F H (
j 50

Nb2k21

V= ~y! j J •w= G
ab

,

~53!
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where we have introduced Vab(y)[wabb̂(y)
[(gwag$ĝ(y)dgb%[@w= •L= (y)#ab , which by construction
obeysuVab(yÞ0)u,1. Thus for large enoughNb this last
result is approximated by

f a

Nbn̄a
S 12â~y!

y D S 12b̂~y!

y DNbF H (
j 50

`

V= ~y! j J •w= G
ab

5
f a

n̄a
S 12â~y!

y D S 12b̂~y!

y D @$w= 212L= ~y!%21#ab . ~54!

By adding Eqs.~50! and~54! we obtain the following result
for ḡab

o (y) in the limit of largeNb :

ḡab
o ~y!5dab

f a

n̄a
S n̄a

y
2

12â~y!

y2 D
1

f a

n̄a
S 12â~y!

y D S 12b̂~y!

y Dpab~y!, ~55!

where we have introduced the particular propagator

pab~y![@$w= 212L= ~y!%21#ab

with Lab~y![â~y!dab . ~56!

B. Determination of g l
„3…

„q …

The second quantity we need to determine isg l
(3)(q),

which is defined forq5q* in Eq. ~30!. With the help of Eqs.
~10! and ~12! this quantity can be written as

g l
~3!~q![2 (

abg
(

s
rsE

0

Ns
d j1E

0

Ns
d j2E

0

Ns
d j3ss j1

a ss j2
b ss j3

g

3e2~1/2!~a2q2/6!$u j 12 j 2u1u j 22 j 3u1u j 12 j 3u%za l~q!

3zb l~q!zg l~q!, ~57!

where we have made use of the fact that the threeQI -vectors
in ḡabg(QI 1 ,QI 2 ,QI 3) form an equilateral triangle, so that
QI 1•QI 2[QI 2•QI 3[QI 1•QI 3[2 1

2q
2 with uQI 1u5uQI 2u5uQI 3u

5q. As Eq. ~57! involves a summation overa, b, andg of
an expression which is completely symmetric in these indi-
ces, it follows that we can split the triple integration along
the chain into six triple nested integrations, which all give
the same contribution tog l

(3) , i.e.

g l
~3!~y![26(

abg
(

s
rsE

0

Ns
d j1E

j 1

Ns
d j2E

j 2

Ns
d j3ss j1

a ss j2
b

3ss j3
g e2y~ j 32 j 1!za l~y!zb l~y!zg l~y!

[26(
abg

ḡabg
o ~y,y,y!za l~y!zb l~y!zg l~y!, ~58!

where we introduced againy[a2q2/6. To calculate
ḡabg

o (y,y,y) we first substitute Eq.~8! and perform the inte-
grations. This results in

ḡabg
o ~y,y,y!

5(
s

rs(
k51

Nb E
nk21

c

nk
c

d j1H E
j 1

nk
c

d j21(
l .k

Nb E
nl 21

c

nl
c

d j2J
3H E

j 2

nl
c

d j31 (
m. l

Nb E
nm21

c

nm
c

d j3J
3da,ak

db,a l
dg,am

e2y~ j 32 j 1!. ~59!

So ḡabg
o (y,y,y) can be written as the sum of four contribu-

tions

ḡabg
o ~y,y,y![dabdbg(

s
rs(

k51

Nb

da,ak
E

0

nk
d j1E

j 1

nk
d j2E

j 2

nk
d j3 e2y~ j 32 j 1!

1dab(
s

rs(
k51

Nb

(
m.k

Nb

da,ak
dg,am

E
0

nk
d j1E

j 1

nk
d j2E

0

nm
d j3 e2y~ j 32 j 11nm21

c
2nk21

c
!

1dbg(
s

rs(
k51

Nb

(
m.k

Nb

da,ak
db,am

E
0

nk
d j1E

0

nm
d j2E

j 2

nm
d j3 e2y~ j 32 j 11nm21

c
2nk21

c
!

1(
s

rs(
k51

Nb

(
l .k

Nb

(
m. l

Nb

da,ak
db,a l

dg,am
E

0

nk
d j1E

0

nl
d j2E

0

nm
d j3 e2y~ j 32 j 11nm21

c
2nk21

c
!, ~60!

where the original global variablesj 1 , j 2 , and j 3 have been transformed to local block variables. By using the definition of the
cumulative lengthnk

c[S l 51
k nl we can factorize the last three triple integrals in Eq.~60! into contributions from each of the

separate blocks labeled fromk to m.k, i.e.,

E
0

nk
d j1E

j 1

nk
d j2E

0

nm
d j3 e2y~ j 32 j 11nm21

c
2nk21

c
!

5F E
0

nk
d j1E

j 1

nk
d j2 e2y~nk2 j 1!GF )

i 5k11

m21

e2yniG F E
0

nm
d j3 e2y j3G5F2

nke
2ynk

y
1

12e2ynk

y2 GF )
i 5k11

m21

e2yniG F12e2ynm

y G , ~61!
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E
0

nk
d j1E

0

nm
d j2E

j 2

nm
d j3e2y~ j 32 j 11nm21

c
2nk21

c
!5F E

0

nk
d j1e2y~nk2 j 1!GF )

i 5k11

m21

e2yniG F E
0

nm
d j2E

j 2

nm
d j3 e2y j3G

5F12e2ynk

y GF )
i 5k11

m21

e2yniG F2
nme2ynm

y
1

12e2ynm

y2 G , ~62!

and

E
0

nk
d j1E

0

nl
d j2E

0

nm
d j3 e2y~ j 32 j 11nm21

c
2nk21

c
!

5F E
0

nk
d j1e2y~nk2 j 1!GF )

i 5k11

l 21

e2yniG @nle
2ynl#F )

i 5 l 11

m21

e2yniG F E
0

nm
d j3 e2y j3G

5F12eynk

y GF )
i 5k11

l 21

e2yniG @nle
2ynl#F )

i 5 l 11

m21

e2yniG F12e2ynm

y G . ~63!

Finally the first triple integral in Eq.~60! only involves an nested integration over thekth block and leads to

E
0

nk
d j1E

j 1

nk
d j2E

j 2

nk
d j3 e2y~ j 32 j 1!5

nk~11e2ynk!

y2 2
2~12e2ynk!

y3 . ~64!

Recalling again the definition ofrs Eq. ~5! and that of the ‘‘sum overs’’ @see Eq.~6!# it is easy to see, in analogy with Eqs.
~49! and ~50!, that the first contribution to Eq.~60! results in

dabdbg(
s

rs(
k51

Nb

da,akFnk~11e2ynk!

y2 2
2~12e2ynk!

y3 G
[

dabdbg

Nb(gwg
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(
k51
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(
a1

(
a2

¯(
aNb

E
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`

dn1¯E
0

`

dnNb
wa1

0 Pa1
~n1!wa1a2

¯waNb21aNb
PaNb

~nNb
!

3Fda,akS nk~11e2ynk!

y2 2
2~12e2ynk!
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5

dabdbg

Nb(gwg
0n̄g

(
k51

Nb H(
a1

(
a2

¯ (
ak21

wa1

0 wa1a2
¯wak21aJ E

0

`

dnPa~n!S nk~11e2ynk!

y2 2
2~12e2ynk!

y3 D
5dabdbg

f a

n̄a
F n̄a

y22
â8~y!

y2 2
2~12â~y!!

y3 G with â8~y![2E
0

`

dnne2ynPa~n!. ~65!

The remaining three contributions to Eq.~60! can be determined using Eqs.~61!–~63! and following a similar set of steps
which led from Eq.~51! to ~55!. The result for each contribution can simply be obtained by the following prescription. Start
with the Kronecker delta with the ‘‘lowest’’ block index, i.e.,da,ak

in all three contributions. This Kronecker delta implies that
the term which depends onnk should be averaged overPa(n). Then ‘‘propagate’’ to the next Kronecker delta in line by
replacing for instanceda,ak

( l .k
Nb @P i 5k11

l 21 e2yni#db,a l
, in the limit of Nb→`, by the propagatorpab(y) Eq. ~56!, followed by

averaging the term depending onnl over Pb(n). Repeat if necessary this propagation step until the last Kronecker delta is
encountered. Finally multiply the resulting expression bywa

0/Nb(gwg
0n̄g[ f a /Nbn̄a , originating fromrs Eq. ~5!, and cancel

the Nb in the denominator by the dummy sum over the blocks(k51
Nb which is still left. The final result forḡabg

o (y,y,y),
therefore, becomes

ḡabg
o ~y,y,y!5dabdbg

f a

n̄a
F n̄a

y22
â8~y!

y2 2
2~12â~y!!

y3 G1dab

f a

n̄a
F â8~y!

y
1

12â~y!

y2 Gpag~y!F12ĝ~y!

y G
1dbg

f a

n̄a
F12â~y!

y Gpab~y!F b̂8~y!

y
1

12b̂~y!

y2 G2
f a

n̄a
F12â~y!

y Gpab~y!@b̂8~y!#pbg~y!F12ĝ~y!

y G . ~66!

C. Determination of ḡ abg„q ,q ,Ahq …

This third-order ideal intrachain correlation function appears in the fourth-order coefficientg l
(4)(q;h1 ,h2 ,h3) @see Eqs.

~38! and ~40! with q5q* # in the Landau free energyFL and is a shorthand notation forḡabg(QI 1 ,QI 2 ,2QI 12QI 2) with
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uQI 1u5uQI 2u5q and\(QI 1 ,QI 2) given by cos@\(QI 1,QI 2)#[h/221. As the length ofQI 3[2QI 12QI 2 is given byAhq, it follows

that QI 1•QI 2[(h/221)q2 and QI 2•QI 3[QI 1•QI 3[2(h/2)q2. Thus by using Eqs.~10! and ~12! and changing again to the
variabley, ḡabg(y,y,hy)[ḡabg(q,q,Ahq) can be written as

ḡabg~y,y,hy![(
s

rsE
0

Ns
d j1E

0

Ns
d j2E

0

Ns
d j3ss j1

a ss j2
b ss j3

g e2y$~12h/2!u j 12 j 2u1~h/2!u j 22 j 3u1~h/2!u j 12 j 3u%. ~67!

If we now split the triple integral into six triple nested integrals according toj 1, j 2, j 3 etc., we obtain

ḡabg~y,y,hy![ḡabg,1
o ~y,y,hy!1ḡbag,1

o ~y,y,hy!1ḡgba,2
o ~y,y,hy!1ḡgab,2

o ~y,y,hy!1ḡagb
o ~y,y,y!1ḡbga

o ~y,y,y!, ~68!

whereḡagb
o (y,y,y) is given by Eq.~66! with b andg interchanged and whereḡabg,1

o (y,y,hy) andḡabg,2
o (y,y,hy) are defined

by

ḡabg,1
o ~y,y,hy![(

s
rsE

0

Ns
d j1E

j 1
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d j2E

j 2
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d j3ss j

a ss j2
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g e2y$ j 22 j 11h~ j 32 j 2!% ~69!

and
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j 1
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d j2E

j 2
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d j3ss j1

a ss j2
b ss j3

g e2y$ j 32 j 21h~ j 22 j 1!%. ~70!

The determination ofḡabg,1
o (y,y,hy) proceeds along the same lines as that ofḡabg

o (y,y,y) in the last subsection. First we
substitute the expressions for thes’s, Eq. ~8! into Eq. ~69! and perform the trivial integrations over the Heaviside step
functions originating from theses’s. The result is a sum of four contributions similar to Eq.~60!, i.e.
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c
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(
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0
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0
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c
2nk21

c
1h~nm21

c
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c
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~71!

Then each of the triple nested integrals is evaluated and the result for the last three of them is written as a product of terms
belonging to separate blocks labeled fromk to m.k @similar to Eqs.~61!–~63!#. Having derived these factorizations we can
again apply the prescription, described at the end of the last subsection, to obtain the final expression forḡabg,1

o (y,y,hy),
which reads

ḡabg,1
o ~y,y,hy!5dabdbg

f a

n̄a
F n̄a

hy22
11h

h2y3 1
â~hy!

h2~12h!y32
â~y!

~12h!y3G1dab

f a

n̄a
F 1

hy2 1
â~y!

~12h!y22
â~hy!

h~12h!y2G
3pag~hy!F12ĝ~hy!

hy G1dbg

f a

n̄a
F12â~y!

y Gpab~y!F 1

hy2 1
b̂~y!

~12h!y22
b̂~hy!

h~12h!y2G
2

f a

n̄a
F12â~y!

y Gpab~y!F b̂~hy!2b̂~y!

~12h!y Gpbg~hy!F12ĝ~hy!

hy G . ~72!

We do not have to determineḡabg,2
o (y,y,hy) Eq. ~70! separately, as it is easy to see that it is equal toḡabg,1

o ( ỹ,ỹ,h̃ỹ) with
ỹ[hy and h̃[1/h. This identification obviously breaks down forh50, but this case is excluded anyhow@see Eq.~40!#.
Therefore, it follows that:
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ḡabg,2
o ~y,y,hy!5dabdbg

f a

n̄a
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f a
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y G1dbg

f a
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2

f a

n̄a
F12â~hy!

hy Gpab~hy!F b̂~hy!2b̂~y!

~12h!y Gpbg~y!F12ĝ~y!

y G . ~73!

This last result in combination with Eqs.~72!, ~66!, and~68! completes the determination ofḡabg(y,y,hy).

D. Determination of F1„q ;h …

The final quantity which we need to determine isF1(q;h), which is also part ofg l
(4)(q;h1 ,h2 ,h3) as shown in Eqs.~43!

and ~44!. It is defined forq5q* in Eq. ~42! and can be written as

F1~y;h![8 (
abgd

ḡabgd
o ~y;h!za l~y!zb l~y!zg l~y!zd l~y! ~74!

with

ḡabgd
o ~y;h![(

s
rsE

0

Ns
d j1E

j 1

Ns
d j2E

j 2

Ns
d j3E

j 3

Ns
d j4 ss j1

a ss j2
b ss j3

g ss j4
d e2y$ j 22 j 11h~ j 22 j 3!1 j 32 j 4%. ~75!

This ḡabgd
o (y;h) can be determined in the same way asḡabg

o (y,y,y) or ḡabg,1
o (y,y,hy) in the last two subsections, albeit at

the expense of a bit more algebra. For instance when the expressions for thes’s ~8! are substituted in Eq.~75! and we integrate
over the Heaviside step-functions appearing in theses’s, we end up with the following result:

ḡabgd
o ~y;h![(

s
rs(

k51

Nb E
nk21

c

nk
c

d j1H E
j 1

nk
c

d j21(
l .k

Nb E
nl 21

c

nl
c

d j2J H E
j 2

nl
c

d j31 (
m. l

Nb E
nm21

c

nm
c

d j3J
3H E

j 3

nm
c

d j41 (
p.m

Nb E
np21

c

np
c

d j4J da,ak
db,a l

dg,am
dd,ap

e2y$ j 22 j 11h~ j 22 j 3!1 j 32 j 4%, ~76!

which leads to a sum of eight contributions instead of six as in Eq.~60! or Eq. ~71!. In evaluating this quantity we have to
consider the situation whereh is equal to 1 separately, because in that case the argument of the exponential does not depend
on j 3 . We can determineḡabgd

o (y;h) for generalh and subsequently take the limit ofh→1, but it is just as easy to takeh
51 in Eq. ~76! and redo the calculation. The result forhÞ1 in the limit of Nb→` reads

ḡabgd
o ~y;h!5dabdbgdgd

f a

n̄a
F n̄a

hy32
112h

h2y4 1
â~hy!

h2~12h!2y42
~322h!â~y!

~12h!2y4 1
â8~y!

~12h!y3G1dabdbg

f a

n̄a
F 1

hy3

2
â~hy!

h~12h!2y3 1
~22h!â~y!

~12h!2y3 2
â8~y!

~12h!y2Gpad~y!F12 d̂~y!

y G1dabdgd

f a

n̄a
F 1

hy22
â~hy!

h~12h!y2

1
â~y!

~12h!y2Gpag~hy!F 1

hy22
ĝ~hy!

h~12h!y2 1
ĝ~y!

~12h!y2G1dbgdgd

f a

n̄a
F12â~y!

y Gpab~y!F 1

hy32
b̂~hy!

h~12h!2y3

1
~22h!b̂~y!

~12h!2y3 2
b̂8~y!

~12h!y2G1dgd

f a

n̄a
F12â~y!

y Gpab~y!F b̂~hy!2b̂~y!

~12h!y Gpbg~hy!F 1

hy22
ĝ~hy!

h~12h!y2

1
ĝ~y!

~12h!y2G1dab

f a

n̄a
F 1

hy22
â~hy!

h~12h!y2 1
â~y!

~12h!y2Gpag~hy!F ĝ~hy!2ĝ~y!

~12h!y Gpgd~y!F12 d̂~y!

y G
1dbg

f a

n̄a
F12â~y!

y Gpab~y!F b̂~hy!

~12h!2y22
b̂~y!

~12h!2y2 1
b̂8~y!

~12h!yGpbd~y!F12 d̂~y!

y G
1

f a

n̄a
F12â~y!

y Gpab~y!F b̂~hy!2b̂~y!

~12h!y Gpbg~hy!F ĝ~hy!2ĝ~y!

~12h!y Gpgd~y!F12 d̂~y!

y G , ~77!

and forh51
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ḡabgd
o ~y;1!5dabdbgdgd

f a

n̄a
F n̄a

y32
3~12â~y!!

y4 2
2â8~y!

y3 1
â9~y!

2y2 G1dabdbg

f a

n̄a
F12â~y!

y3 1
â8~y!

y2 2
â9~y!

2y G
3pad~y!F12 d̂~y!

y G1dabdgd

f a

n̄a
F12â~y!

y2 1
â8~y!

y Gpag~y!F12ĝ~y!

y2 1
ĝ8~y!

y G1dbgdgd

f a

n̄a
F12â~y!

y G
3pab~y!F12b̂~y!

y3 1
b̂8~y!

y2 2
b̂9~y!

2y G2dgd

f a

n̄a
F12â~y!

y Gpab~y!@b̂8~y!#pbg~y!F12ĝ~y!

y2 1
ĝ8~y!

y G
2dab

f a

n̄a
F12â~y!

y2 1
â8~y!

y Gpag~y!@ ĝ8~y!#pgd~y!F12 d̂~y!

y G1dbg

f a

n̄a
F12â~y!

y G
3pab~y!F1

2
b̂9~y!Gpbd~y!F12 d̂~y!

y G1
f a

n̄a
F12â~y!

y Gpab~y!@b̂8~y!#pbg~y!@ ĝ8~y!#pgd~y!F12 d̂~y!

y G .
~78!

IV. CONCLUDING REMARKS

Summarizing, in this work we developed a Landau
theory which can be used to determine the phase behavior
~stability of possible microphases! of melts belonging to a
very general class of statistical multiblock copolymers, re-
ferred to as multiple segment-type statistical multiblock co-
polymers, within the weak segregation regime~WSR!. This
class of copolymers, which is sufficiently general to cover all
industrial relevant bulk statistical multiblock copolymers
such as all known thermoplastic elastomers, is characterized
by chains containing a large number of blocks, of which
there areM>2 chemically different types. Each chemically
different type of block is assumed to have a~normalized!
molecular weight distributionPa(n) (a51,...,M ) which can
have any shape. The possible sequences of blocks which are
encountered in these copolymer chains are, as far as their
type is concerned, described by a first-order Markov process,
i.e., by a matrix of transition probabilitiesw= Eq. ~4!. Further-
more there is no correlation in length~molecular weight!
between different blocks within a copolymer chain, nor be-
tween blocks belonging to different chains. As blocks are
sequences of segments, there areM chemically different
types of segments present in the system. Interactions be-
tween unlike segments within a chain or between unlike seg-
ments belonging to different chains are taken to be pairwise
and described in the usual way by a set of1

2M (M21) Flory
x-parameters. As the melt is assumed to be incompressible,
this Landau theory is formulated in terms ofM21 indepen-
dent segmental order-parameter fieldsma(xI ) (a51,...,M
21). These segmental order-parameter fields are coarse
grained deviations of microscopic segment densities from
their values in the homogeneous state. In the WSR, i.e., just
inside the inhomogeneous region in parameter space where
the segmental order-parameter fields are still ‘‘small,’’ the
Landau free energyFL can be written as a functional Taylor
expansion in these fields, or more precisely their Fourier-
transformsma(qI ) (a51,...,M21). These segmental order-

parameter fields can be approximated in the WSR by simple
sinusoidal function of position in real space. This approxi-
mation is known as the first harmonic approximation~FHA!.

The coefficients ofFL in this FHA are known as vertices and
the main object of this work was to determine these vertices.
This can be done analytically as these vertices can be written
in terms of so-called ideal intrachain correlation functions,
which measure spatial correlations in density of the various
types of segments in the ideal copolymer melt, i.e., when the
interactions between the different types of segments have
been switched off.

The general expression of this Landau free energyFL

was derived in Appendix A using a coarse grained model for
a general copolymer melt by methods of statistical mechan-
ics. It involves the most general description of a polymer
melt in that it encompasses all possible regular and statistical
copolymers, including homopolymers and all possible
blends. This derivation is a generalization of the one given
by Fredricksonet al.2 for the binary correlated random co-
polymer system and avoids the use of replica methods to
cope with the quenched disorder in the copolymer chains.

As the current theory is genuine mean-field theory, fluc-
tuations in the various order-parameter fields are neglected.
It is known, however, that these fluctuations are important in
certain statistical multiblock copolymers.9 Thus it is to be
expected that this will also be the case for the more general
class of statistical multiblock copolymers which is consid-
ered in this work. These so-called fluctuation corrections will
be considered in future work.
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APPENDIX A: FORMAL DERIVATION OF A LANDAU
FREE ENERGY FOR A GENERAL COPOLYMER
MELT

In this Appendix we will present a formal derivation of a
Landau free energy for a general copolymer melt. General in
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the sense that the copolymer chains may consist of arbitrary
sequences of monomers or segments of which there areM
chemically different sorts present. So, both the composition
distribution and the sequence distribution as well as the over-
all length ~molecular weight! distribution of the system are
left arbitrary. This encompasses all possible regular and sta-
tistical copolymer systems~binary, ternary, etc.!, but also
homopolymers and all conceivable blends of these systems
~homopolymer–homopolymer, homopolymer–copolymer,
etc.!. A related derivation for copolymer systems for which
the sequence distribution of the segments is described by
Markovian statistics has been given by Panyukov and
Kuchanov,3 but in contrast to this derivation our derivation
does not rely upon the use of the replica method22 and is
more general as far as the sequence distribution of the seg-
ments is concerned. In fact our derivation is a generalization
of the one given by Fredricksonet al.2 for the binary corre-
lated random copolymer system.

To describe this general copolymer melt we will employ
the typical coarse graining one usually encounters in poly-
mer physics.18 Consider a melt ofnc copolymer chains in a
volumeV. As these chains consist of arbitrary sequences of
up toM chemically different types of monomers, the number
of possible chains is astronomically large. To denote the
various different species of chains present in the system, we
will use the labels. Each chain belonging to speciess, of
which there arens present, will consist ofNs monomers or
segments. Asegment, also and interchangeably referred to as
a monomer, consists of a piece of the real polymer chain~a
number of real monomers! chosen in such a way that the
chain will behave as random walk on the scale of such a
segment. In other words at that scale the chain will appear to
beflexible, whereas at smaller scales it will bestiff. TheseM
chemically different segments will be labeled by Greek low-
ercase symbolsa, b, etc. running from 1 toM and we will
assume without loss of generality that the statistical segment
lengths~Kuhnian lengths! of these various segments are all
equal and denoted bya. To specify a given chain speciess,
Ising-type variablesssi

a will be introduced witha51,...,M
and i 51,...,Ns in such a way thatssi

a [1 when segmenti is
of typea andssi

a [0 otherwise. The conformations of thens

chains belonging to speciess will be specified by the begin
and the end positions of the corresponding segments that
make up these chains, i.e., the set of three-dimensional vec-
tors $RI mi

s %mi with m51,...,ns defined with respect to some
origin O in V. The total set of these vectors, i.e.,$RI mi

s %smi

defines a configurationalmicrostateof the whole system.
Such a microstate will be denoted byg. A function G which
depends on these microstates, i.e., a so-calledstate variable,
will be written as Ĝ[G(g). Examples of important state
variables which we will need later on are themicroscopic
a-segment densityr̂a(xI ), defined for eachxI PV by

r̂a~xI ![(
smi

ssi
a d~xI 2RI mi

s !, ~A1!

and theoverall microscopic segment densityr̂(xI ) through

r̂~xI ![(
a

r̂a~xI !5(
smi

d~xI 2RI mi
s !. ~A2!

By integrating these densities overV we obtain, respectively,
the total number ofa-segmentsNa and the overall number
of segmentsN in the system. This last number can be either
written as (aNa or as (snsNs . Thus the fraction ofa-
segments is given byf a[Na /N. Without loss of generality
we will choose our length scale in such a way that each
segment has a unit volume and therefore thatN[V. In that
case it follows that:

1

V E
V
d3xr̂~xI ![1, ~A3!

and thatf a can be written as

f a[
1

V E
V
d3xr̂a~xI !. ~A4!

In order to account approximately for the effect of excluded
volume due to the repulsive nature of the intrachain and
interchain potentials at short distances, we will assume that
the system isincompressible, i.e., that the overall micro-
scopic segment density is not only equal to 1 ‘‘globally,’’ as
in Eq. ~A3!, but also ‘‘locally,’’ that is r̂(xI )[1, ;xI PV. As
our aim is to derive a Landau free energy for this copolymer
melt of M quasi-components,3 we need to define a set ofM
order parametersor actually M order-parameterfields to
describe the possibleinhomogeneous phasesof the system
and to be able to calculate their free energy. These order
parameter fields can be defined by coarse graining the fol-
lowing set ofmicroscopic order-parameterfields

ĉa~xI ![r̂a~xI !2 f a , ~a51,...,M !. ~A5!

It is clear that due to the incompressibility assumption only
M21 of these fields will be independent, as it follows that:

(
a

ĉa~xI ![0. ~A6!

The interactions between the various segments in this co-
polymer melt can be described in terms of these microscopic
order-parameter fields. This can be shown in the following
way. Under the assumption that segment–segment interac-
tions are pairwise additive, the total interaction energyÛ of
the system is given by

Û[ 1
2(

ab
(
smi

(
t l j

ssi
a s t j

b uab~RI mi
s 2RI l j

t !, ~A7!

whereuab(xI ) is the interaction potential between a segment
of type a and a segment of typeb, which is assumed to be
short ranged in space. Although formally this last expression
contains ‘‘self-energy’’ terms, i.e., terms witha5b, s5t,
l 5m, andi 5 j , we will not bother to explicitly exclude them
in the notation used in Eq.~A7!. It is easy to see that this
total interaction energyÛ can be written in terms of the
specific microscopic segment densitiesr̂a(xI ) @Eq. ~A1!# as

Û[ 1
2(

ab
E

V
d3xE

V
d3y uab~xI 2yI !r̂a~xI !r̂b~yI !, ~A8!

which for a short-rangeduab(xI ) becomes
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Û[ 1
2(

ab
eabE

V
d3x r̂a~xI !r̂b~xI ! ~A9!

with

eab[E
V
d3x uab~xI !. ~A10!

By eliminating one of ther̂ ’s, sayr̂M , from Eq.~A9! using
(ar̂a(xI )[1 and substitutingr̂a(xI )[ĉa(xI )1 f a , one ends
up, apart from a constant term, with

Û[ 1
2(

ab
8$eab2eaM2ebM1eMM%E

V
d3xĉa~xI !ĉb~xI !,

~A11!

where the accent implies that both sums run from 1 toM
21. In terms of the set of Floryx-parameters16 between the
different segments, i.e.

xab[eab2
eaa1ebb

2
with xaa50, ;a, ~A12!

this Û can finally be written as

Û[ 1
2(

ab
8 $xab2xaM2xbM%E

V
d3xĉa~xI !ĉb~xI !

[2(
ab

8 x̃abE
V
d3xĉa~xI !ĉb~xI !. ~A13!

For the binary case (M52), the only remaining
x̃-parameter,x̃11, then reduces to the more familiarx12.
Having introduced the interaction energy of the copolymer
melt, the final ingredient we need before we can write down
the system’spartition function Z, is theHamiltonian Ĥ0 of
the system in absence of these interactions. Asunperturbed
chains in a melt obeyrandom walk statistics, this Ĥ0 can be
defined via the followingnormalized statisticalweight be-
longing to an ensemble ofGaussianchains

e2Ĥ0[)
s

)
m51

ns H 1

V )
i 51

Ns21

g~RI m,i 11
s 2RI mi

s !J , ~A14!

with g(xI )[(3/2pa2)3/2 exp(23x2/2a2). In this expression
there is a factor 1/V to account for the center-of-mass posi-
tion of each of thenc chains. This brings us to the starting
point of the derivation of a Landau free energy, namely the
system’s partition functionZ or more precise the system’s
configurational partition function Z, i.e., the sum of the
Boltzmann weightsover all allowed states of the system. The
set of all allowed states furnishes the so-calledstate space or
configuration-spaceG of the system, which in this case is
given by

G[$$RI mi
s %smiur̂~xI !51, ;xI PV%. ~A15!

As we are ultimately only interested in differences in free
energy between possible inhomogeneous phases of the sys-
tem, all combinatorial terms will be left out of this partition
function since they only lead to constant terms in the free
energy. With this in mindZ becomes

Z[)
smi

E
V
d3Rmi

s d~12 r̂ !e2Ĥ0e(ab8 x̃ab*Vd3xĉa~xI !ĉb~xI !.

~A16!

In this coarse grained description incompressibility, which is
due to interactions at the molecular level, has to be explicitly
accounted for via a delta function. Given this partition func-
tion, the first thing we will do is transform it, in four steps,
into a form which is more suitable for further analysis. The
first step involves a formal shift of the state variable depen-
dence of the second exponential in Eq.~A16!. This is done
by introducing the followingfunctional decomposition of the
identity into Z:

)
n

8 E Dcnd~cn2ĉn!51, ~A17!

where*Dc denotes a functional integration over the scalar
field c, and leads to

Z5)
n

8 E Dcne(ab8 x̃ab*Vd3xca~xI !cb~xI !

3)
smi

E
V
d3Rmi

s e2Ĥ0d~12 r̂ !)
l

8d~cl2ĉl!.

~A18!

The second step involves substitution of the followingfunc-
tional spectral representationsfor the M ‘‘delta-functions’’
in the above expression

d~12 r̂ ![E DI 0ei *Vd3xI0~xI !$12 r̂~xI !%

d~ca2ĉa![E DI aei *Vd3xIa~xI !$ca~xI !2ĉa~xI !%

~a51,...,M21!, ~A19!

resulting in

Z5)
n

8 E Dcne(ab8 x̃ab*Vd3xca~xI !cb~xI !

3E DI 0)
l

8 E DI lei *Vd3x$I 0~xI !1(a8 I a~xI !ca~xI !%

3)
sm j

E
V
d3Rm j

s e2Ĥ0e2 i *Vd3x$I 0~xI !r̂~xI !1(a8 I a~xI !ĉa~xI !%.

~A20!

In the third step the auxiliary integration fieldsI 0(xI ),
I 1(xI ),...,I M21(xI ) are transformed to new fields
J1(xI ),...,JM(xI ), defined in the following way:

Ja~xI ![I a~xI !1I 0~xI ! ~a51,...,M21!

~A21!
JM~xI ![I 0~xI !.

Using this isometric transformation and Eqs.~A2!, ~A5!, and
~A6! it is easily verified that the following two identities
hold:

I 0~xI !r̂~xI !1(
a

8Ia~xI !ĉa~xI !
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5JM~xI !1(
a

8 Ja~xI !r̂a~xI !2(
a

f aJa~xI !,

~A22!

I 0~xI !1(
a

8 I a~xI !ca~xI !5JM~xI !1(
a

Ja~xI !ca~xI !,

and, therefore, thatZ can be written as

Z5)
n

8 E Dcne(ab8 x̃ab*Vd3xca~xI !cb~xI !

3)
l
E DJlei (a*Vd3x$Ja~xI !@ca~xI !1 f a#%

3^e2 i (a*Vd3xJa~xI !r̂a~xI !&0 . ~A23!

In this expression̂¯&0 denotes an average with respect to
theunperturbed ensemble of chain conformationsdefined by
Ĥ0 , i.e.

^Â&0[)
smi

E
V
d3Rmi

s e2Ĥ0Â. ~A24!

The last step in the transformation ofZ boils down to rewrit-
ing the integrand of Eq. ~A23! using the fields
J̃1(xI ),...,J̃M(xI ), defined by2

J̃a~xI ![Ja~xI !2
1

V E
V
d3yJa~yI ! ~a51,...,M !. ~A25!

It is easy to see that the use of these new fields in conjunc-
tion with Eq. ~A4! will eliminate the term in Eq.~A23! in-
volving f a . Thus we finally end up with

Z5)
n

8 E Dcne(ab8 x̃ab*Vd3xca~xI !cb~xI !

3)
l
E DJlei (a*Vd3xJ̃a~xI !ca~xI !1G, ~A26!

with G defined by

G[ ln^e2 i (a*Vd3xJ̃a~xI !r̂a~xI !&0 . ~A27!

In order to be able to extract a Landau free energy from Eq.
~A26!, we will need to analyze this last quantity a bit further.
This part, however, forms the essence of the whole deriva-
tion of this free energy. From the definition of^¯&0 , Eq.
~A24!, in combination with Eq.~A14! it follows that:

G[ ln )
sm

E
V
d3Rm1

s
¯E

V
d3RmNs

s 1

V

3 )
j 51

Ns21

g~RI m, j 11
s 2RI m j

s !e2 i (a*Vd3xJ̃a~xI !r̂a
sm

~xI !, ~A28!

where use has been made of the decomposition

r̂a~xI ![(
sm

r̂a
sm~xI !

with

r̂a
sm~xI ![(

i
ssi

a d~xI 2RI mi
s !. ~A29!

This can also be written as

G5(
sm

ln E
V
d3Rm1

s
¯E

V
d3RmNs

s 1

V

3 )
j 51

Ns21

g~RI m, j 11
s 2RI m j

s !e2 i (a*Vd3xJ̃a~xI !r̂a
sm

~xI !. ~A30!

From a closer inspection of this last expression it becomes
clear that because of theNs-fold integration over theRI vari-
ables ~which, therefore, have become dummy variables!,
each term in the sum overm for a given chain types, i.e.,
each term in the sum over all chains of a given type in the
system, gives the same contribution toG. Therefore,G be-
comes

G5(
s

ns ln E
V
d3R1¯E

V
d3RNs

1

V

3 )
j 51

Ns21

g~RI j 112RI j !e
2 i (a*Vd3xJ̃a~xI !r̂a

s
~xI !, ~A31!

wherer̂a
s (xI ) is defined by

r̂a
s ~xI ![(

i
ssi

a d~xI 2RI i !, ~A32!

which clearly is equal to

G5(
s

ns ln^ev̂s&0

with

v̂s[2 i(
a

E
V
d3x J̃a~xI !r̂a

s ~xI !. ~A33!

Now by introducing the number density of chains of types,
rs[ns /V it follows that G can be written as:

G[V(
s

rs ln^ev̂s&0[V^ ln^ev̂&0&d . ~A34!

In this last expression the second average with subscriptd is
a disorder average, i.e., an average over the quenched disor-
der in the copolymer chains. More important this quenched
average involves the logarithm of a quantity proportional to
the partition function, as can be seen from Eqs.~A26! and
~A34!, and therefore, it is the free energy that is being aver-
aged over the disorder. To calculate the average of the loga-
rithm of the partition function one can resort to the replica
method,22 but this is not necessary for the kind of quenched
disorder one encounters in statistical copolymer systems, as
will be shown now.

As the Landau free energy for this system involves an
expansion up to the fourth order in the order-parameter fields
$ca(xI )%, the thing to do is to expandG up to the fourth order
in v̂. The reason for this step will become clear in the pro-
cess. The result is
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G

V
.

1

2
^^v̂2&0&d1

1

6
^^v̂3&0&d1

1

24
^^v̂4&0&d

2
1

8
^^v̂2&0

2&d , ~A35!

where we have used the fact that^v̂&050, a result which is
easily derived with a little bit of algebra. Let us first consider
the second-order term. By using Eq.~A33! it follows that:

1
2^^v̂

2&0&d[2 1
2(

ab
E

V
d3xE

V
d3yJ̃a~xI !J̃b~yI !

3(
s

rs^r̂a
s ~xI !r̂b

s ~yI !&0 , ~A36!

which by invoking the Fourier-representation ofr̂a
s (xI ) Eq.

~A32!, i.e.

r̂a
s ~xI ![

1

V
(qI

(
j

ss j
a eiqI •~xI 2RI j !, ~A37!

can be written as

1

2
^^ṽ2&0&d[

~2 i !2

2V2 (
ab

(
qI qI 8

J̃a~qI !J̃b~qI 8!

3(
j j 8

(
s

rsss j
a ss j8

b ^e2 i ~qI •RI j 1qI 8•RI j 8!&0 ,

~A38!

where J̃a(qI ) is the Fourier-transform ofJ̃a(xI ). The unper-

turbed ensemble average which appears in this expression,
i.e., ^e2 i (qI •RI j 1qI 8•RI j 8)&0 , is a two-point characteristic function
of a multivariate Gaussian distribution function and is calcu-
lated in Appendix B. It is equal to

^e2 i ~qI •RI j 1qI 8•RI j 8!&0[d~qI 1qI 8!e2~a2q2/6!u j 2 j 8u. ~A39!

In this last expression the delta function is in fact a Kro-
necker delta symbol because due to the finiteness of the vol-
ume V, the allowed wave vectors form a discrete set. This
Kronecker delta symbol expresses the translational invari-
ance of the system. Now by introducing

Gab
~2!~qI 1 ,qI 2![d~qI 11qI 2!(

s
rsgab

s ~qI 1 ,qI 2!

[d~qI 11qI 2!ḡab~q1!,

with gab
s ~qI 1 ,qI 2![(

j j 8
ss j

a ss j8
b e~a2qI 1•qI 2/6!u j 2 j 8u, ~A40!

this second-order contribution toG becomes

1
2^^v̂

2&0&d[
~2 i !2

2V2 (
ab

(
q1q2

Gab
~2!~qI 1 ,qI 2!J̃a~qI 1!J̃b~qI 2!.

~A41!

The third-order and the two fourth-order contributions toG
can also be written in such a form, namely as

1
6^^v̂

3&0&d[
~2 i !3

6V3 (
abg

(
q1q2q3

Gabg
~3! ~qI 1 ,qI 2 ,qI 3!

3 J̃a~qI 1!J̃b~qI 2!J̃g~qI 3!, ~A42!

with

Gabg
~3! ~qI 1 ,qI 2 ,qI 3!

[d~qI 11qI 21qI 3!(
s

rsgabg
s ~qI 1 ,qI 2 ,qI 3!

[d~qI 11qI 21qI 3!ḡabg~qI 1 ,qI 2,2qI 12qI 2! ~A43!

and

1

24
^^v̂4&0&d2

1

8
^^v̂2&0

2&d

[
~2 i !4

24V4 (
abgd

(
q1q2q3q4

Gabgd
~4! ~qI 1 ,qI 2 ,qI 3 ,qI 4!

3 J̃a~qI 1!J̃b~qI 2!J̃g~qI 3!J̃d~qI 4!, ~A44!

whereGabgd
(4) [Gabgd

(4)reg2Gabgd
(4)nl with

Gabgd
~4!reg~qI 1 ,qI 2 ,qI 3 ,qI 4!

[d~qI 11qI 21qI 31qI 4!(
s

rsgabgd
s ~qI 1 ,qI 2 ,qI 3 ,qI 4!

[d~qI 11qI 21qI 31qI 4!ḡabgd~qI 1 ,qI 2 ,qI 3 ,2qI 12qI 22qI 3!,

and

Gabgd
~4!nl ~qI 1 ,qI 2 ,qI 3 ,qI 4!

[d~qI 11qI 2!d~qI 31qI 4!(
s

rsgab
s ~qI 1 ,qI 2!ggd

s ~qI 3 ,qI 4!

1d~qI 11qI 3!d~qI 21qI 4!(
s

rsgag
s ~qI 1 ,qI 3!gbd

s ~qI 2 ,qI 4!

1d~qI 11qI 4!d~qI 21qI 3!(
s

rsgad
s ~qI 1 ,qI 4!gbg

s ~qI 2 ,qI 3!

[d~qI 11qI 2!d~qI 31qI 4!gab~q1!ggd~q3!

1d~qI 11qI 3!d~qI 21qI 4!gag~q1!gbd~q2!1d~qI 11qI 4!

3d~qI 21qI 3!gad~q1!gbg~q2!. ~A45!

In this last resultGabgd
(4)nl (qI 1 ,qI 2 ,qI 3 ,qI 4) has been symme-

trized. This contribution toGabgd
(4) is a part of the so-called

nonlocal term, which is typical for polydisperse copolymer
melts and which vanishes once the number of segment types
M exceeds the number of chain types in the system.3 Both
the quantitiesgabg

s (qI 1 ,qI 2 ,qI 3) and gabgd
s (qI 1 ,qI 2 ,qI 3 ,qI 4) in-

volve higher order Gaussian characteristic functions~see Ap-
pendix B! and are given by
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gabg
s ~qI 1 ,qI 2 ,qI 3!

[(
i jk

ssi
a ss j

b ssk
g e~a2/6!$qI 1•qI 2u i 2 j u1qI 2•qI 3u j 2ku1qI 1•qI 3u i 2ku%

~A46!

and

gabgd
s ~qI 1 ,qI 2 ,qI 3 ,qI 4!

[(
i jkl

ssi
a ss j

b ssk
g ssl

d ea2/6$qI1•qI2ui2ju1qI1•qI3ui2ku1qI1•qI4ui2lu%

3ea2/6$qI2•qI3uj2ku1qI2•qI4uj2lu1qI3•qI4uk2lu%. ~A47!

The functions ḡab(q), ḡabg(qI 1 ,qI 2 ,2qI 12qI 2) and

ḡabgd(qI 1 ,qI 2 ,qI 3 ,2qI 12qI 22qI 3) are, respectively, referred

to as second-, third- and fourth-order ideal intrachain corre-
lation functions, because they are density correlation func-
tions of an ideal copolymer melt, i.e., a melt where the in-
teractions between segments have been switched off. As the
partition functionZ, Eq. ~A26! involves a functional integra-
tion over theJ fields, while the three contributions toG Eqs.
~A41!–~A43! all involve theJ̃ fields, we need to transformG
to the former kind of fields. This is most easily done by
recalling that from the definition ofJ̃a(xI ) @Eq. ~A25!#, it
follows that:

J̃a~qI ![Ja~qI !2Ja~0I !d~qI !, ~A48!

in other wordsJ̃a(qI )[Ja(qI ) for qI Þ0I andJ̃a(0I)[0. There-

fore, by restricting the sum overqI in expressions~A41!–

~A43! to qI Þ0I , we can simply change theJ̃’s herein toJ’s.

Symbolically we now can write the expression forG as

G

V
[2

1

2
Gab

~2!yayb1
i

6
Gabc

~3! yaybyc

1
1

24
Gabcd

~4! yaybycyd , ~A49!

where we have introducedcomposite labels a[(qI Þ0I ,a),

b[(qI Þ0I ,b) etc. and whereya[Ja(qI )/V. Furthermore the

Einstein summation convention has been used. By Fourier
transforming all the integrals involving thec fields and mak-
ing use of the fact that according to the definition ofx̃ab @see
Eq. ~A13!# x̃MM[0, the partition functionZ, Eq. ~A26! can
be written as

Z[)
c

8 E Dmce
V$x̃abmamb%ZG@mI #, ~A50!

with x̃ab[x̃abd(qI 11qI 2), ma[ca(2qI )/V and

ZG@mI #[)
h
E DyheV$ imaya2~1/2!Gab

~2!yayb1~ i /6!Gabc
~3! yaybyc1~1/24!Gabcd

~4! yaybycyd%. ~A51!

For large values of the system’s volumeV, ZG@mI # can be evaluated with the well-knownsaddle-point method, i.e., approxi-
matingZG@m# by

ZG@mI #.eVV@mI #, ~A52!

whereV@mI # is the stationary value ofimaya1(G@yI #/V) with respect to the set ofy’s for which the absolute value is the
smallest. This stationary point is a solution of the following set of equations:

ima2Gab
~2!yb1

i

2
Gabc

~3! ybyc1
1

6
Gabcd

~4! ybycyd50, ;a. ~A53!

Which in vector notation becomes

imI 2G= ~2!
•yI 1

i

2
GT ~3!:yI yI 1

1

6
GU ~4!

]yI yI yI 50I . ~A54!

As we ultimately want to arrive at a Landau free energy as an expansion up to the fourth order in them fields, we only need
to solve this last vector equation iteratively foryI up to the third order inmI . One can easily verify that the solution is given by

yI 5 iG= ~2!21
•mI 2

i

2
G= ~2!21

•GT ~3!:~G= ~2!21
•mI !~G= ~2!21

•mI !1
i

2
G= ~2!21

•GT ~3!:~G= ~2!21
•mI !~G= ~2!21

•GT ~3!:~G= ~2!21
•mI !

3~G= ~2!21
•mI !!2

i

2
G= ~2!21

•GU ~4!
]~G= ~2!21

•mI !~G= ~2!21
•mI !~G= ~2!21

•mI !1O~m4!. ~A55!

If we now substitute this result back intoV@mI #, then after some rearrangement we end up with

V@mI #.2 1
2G=

~2!21
:mI mI 1 1

6GT
~3!
]~G= ~2!21

•mI !~G= ~2!21
•mI !~G= ~2!21

•mI !1 1
24GU

~4!<~G= ~2!21
•mI !~G= ~2!21

•mI !~G= ~2!21
•mI !

3~G= ~2!21
•mI !2 1

8GT
~3!
]~G= ~2!21

•mI !~G= ~2!21
•mI !~G= ~2!21

•GT ~3!:~G= ~2!21
•mI !~G= ~2!21

•mI !!. ~A56!

Given this approximation toZG@mI #, i.e., Eq.~A52! with Eq. ~A56!, the partition functionZ thus becomes

8697J. Chem. Phys., Vol. 109, No. 19, 15 November 1998 Slot, Angerman, and ten Brinke

Downloaded 15 Dec 2005 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Z.)
a

8E DmaeV$x=̃ :mI mI 1V@mI #. ~A57!

The Landau free energy, that is the free energy of the system within themean-field approximation, can be obtained by again
applying the saddle-point method, but now to approximately evaluate this last set of functional integrals. If we write this result
as

Z.e2FL, ~A58!

then thisFL ~in units of kBT! will be the Landau free energy we are looking for and equal to

FL

V
[min

mI 8

$ 1
2@G= ~2!21

22x=̃ #:mI mI 2 1
6GT

~3!
]~G= ~2!21

•mI !~G= ~2!21
•mI !~G= ~2!21

•mI !

2 1
24GU

~4!<~G= ~2!21
•mI !~G= ~2!21

•mI !~G= ~2!21
•mI !~G= ~2!21

•mI !1 1
8GT

~3!
]~G= ~2!21

•mI !~G= ~2!21
•mI !~G= ~2!21

•GT ~3!:

3~G= ~2!21
•mI !~G= ~2!21

•mI !!%. ~A59!

The minimization in this expression is over theM21 independent order-parameter fields, which we choose to be
m1(qI ),...,mM21(qI ), with the remaining dependent order-parameter field,mM(qI ), expressed viamM(qI )[2(a51

M21ma(qI ). If

we now use the definitions ofG= (2) @Eq. ~A40!#, GT (3) @Eq. ~A43!#, andGU (4)[GU (4)reg2GU (4)nl @Eq. ~A45!#, this Landau free
energy can be transformed into

FL

V
[ min

$ma%8
H 1

2(
ab

(
q

@ ḡab
21~q!22x̃ab#ma~qI !mb~2qI !2 1

6(
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3(
kl
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21~ uqI 11qI 21qI 3u!me~2qI 1!mj~2qI 3!mm~2qI 2!mn~qI 11qI 21qI 3!1@12d~qI 21qI 3!#
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3ḡae
21~q2!ḡbj

21~q3!ḡgm
21~q1!ḡdn

21~ uq11qI 21qI 3u!me~2qI 2!mj~2qI 3!mm~2qI 1!mn~qI 11qI 21qI 3!

1 1
24 (

abgd
(

ejmn
(
q1q2

gab~q1!ggd~q2!ḡae
21~q1!ḡbj

21~q1!ḡgm
21~q2!ḡdn

21~q2!me~2qI 1!mj~qI 1!mm~2qI 2!mn~qI 2!

1 1
24 (

abgd
(

ejmn
(
q1q2

gag~q1!gbd~q2!ḡae
21~q1!ḡbj

21~q2!ḡgm
21~q1!ḡdn

21~q2!me~2qI 1!mj~2qI 2!mm~qI 1!mn~qI 2!

1 1
24 (

abgd
(

ejmn
(
q1q2

gad~q1!gbg~q2!ḡae
21~q1!ḡbj

21~q2!ḡgm
21~q2!ḡdn

21~q1!me~2qI 1!mj~2qI 2!mm~qI 2!mn~qI 1!, ~A60!

where we have symmetrized the terms involving the two
third-order ideal intrachain correlation functions. Notice that
the sums over the variousqI ’s in this last expression are no

longer restricted toqI Þ0I . This is allowed and causes no

problem, even though one can show thatg
=̄
(q) is singular

~not invertible! at qI 50I for the infinite system, due to the fact

that by definitionma(0I)5ca(0I)/V[0, ;a. However, in the
second term of the first fourth-order contribution to Eq.
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~A60!, the termḡkl
21(uqI 11qI 2u) appears, which is even unde-

fined for qI 252qI 1Þ0I , let aloneqI 15qI 250I . This is the rea-

son why we introduced the factor 12d(qI 11qI 2) in this con-

tribution to FL .

APPENDIX B: CHARACTERISTIC FUNCTIONS OF
MULTIVARIATE GAUSSIAN DISTRIBUTION
FUNCTIONS

The subject of this Appendix is the calculation of the
following type of average over the ensemble of unperturbed
chain conformations

Cm~qI 1 ,...,qI m

j 1 ,...,j m ![^e2 i ( l 51
m qI l•RI j l&0 , ~B1!

with qI 1 , qI 2 ,...,qI m m arbitrary wave vectors,

$ j 1 ,...,j m%,$1,2,...,N% m arbitrary segment labels, and
where ^...&0 is defined by Eqs.~A14! and ~A24!. An ex-
ample of such an average is given by Eq.~A39!. As this
ensemble is described by a multivariate Gaussian distribution
function @see Eq.~A14!#, this average is in fact anm-point
correlation functionor more precisely anm-point character-
istic functionof this multivariate Gaussian distribution func-
tion. Explicitly this correlation function is given by

Cm~qI 1 ,...,qI m

j 1 ,...,j m ![
1

V E
V
d3R1¯E

V
d3RN )

j 51

N21 S 3

2pa2D 3/2

3e2~3/2a2!~RI j 112RI j !
2
e2 i ( l 51

m qI l•RI j l. ~B2!

By introducing the following isometric change of variables:

uI 1[RI 1

~B3!
uI j[RI j2RI j 21 ~ j 52,...,N!,

the argument of the product of the exponentials in the inte-
grand of Eq.~B2! becomes

2
3

2a2 (
j 52

N

uj
22 i(

l 51

m

qI l•(
k51

j l

uI k . ~B4!

The second term can be written as

2 i(
l 51

m

qI l•(
k51

j l

uI k[2 iuI 1•(
l 51

m

qI l2 i(
l 51

m

qI l•(
k52

N

u~ j l2k!uI k

52 iuI 1•(
l 51

m

qI l2 i (
k52

N F(
l 51

m

u~ j l2k!qI l G
•uI k , ~B5!

whereu(n) is a Heaviside step function. If we now ‘‘com-
plete the square’’ by combining the last term of Eq.~B5!
with the first term of Eq.~B4!, therefore, Eq.~B4! can be
written as

2 iuI 1•(
l 51

m

qI l2
3

2a2 (
j 52

N FuI j1
ia2

3 (
l 51

m

u~ j l2 j !qI l G2

2
a2

6 (
j 52

N

(
k51

m

(
l 51

m

qI k•qI lu~ j k2 j !u~ j l2 j !. ~B6!

It is easy to verify that

(
j 52

N

u~ j k2 j !u~ j l2 j ![min$ j k , j l%21, ~B7!

therefore,Cm becomes

Cm~qI 1 ,...,qI m

j 1 ,...,j m !

[S 3

2pa2D 3~N21!/2

e~a2/6!(k51
m

( l 51
m

@min$ j k , j l %21#qI k•qI l
1

V

3E
V
d3u1e2 iuI 1•( l 51

m qI l )
k52

N E
V
d3uk

3e2~3/2a2!( j 52
N

@uI j 1~ ia2/3!( l 51
m u~ j l2 j !qI l #

2

5dS (
l 51

m

qI l D e2~a2/6!(k51
m

( l 51
m min$ j k , j l %qI k•qI l, ~B8!

because each of theN21 Gaussian integrals cancels one
factor (3/2pa2)3/2 in front and the integral overuI i vanishes
unless the sum over them qI -vectors is equal to zero, in

which case the integral cancels the factorV in the denomi-
nator. The fact that the delta function causesS l 51

m qI l50I is

the reason that the21 in Eq. ~B7! vanishes from the argu-
ment of the exponent in Eq.~B8!. Similarly by using this
same condition it follows that:

(
k51

m

(
l 51

m

min$ j k , j l%qI k•qI l

5 (
k51

m

j kql
21 (

k51

m

(
lÞk

min$ j k , j l%qI k•qI l

52 (
k51

m

(
lÞk

@ j k2min$ j k , j l%#qI k•qI l

52 (
k51

m

(
l .k

u j k2 j l uqI k•qI l . ~B9!

This last step follows from the observation that for a given
pair ~k,l! with lÞk one either has thatj k< j l , in which case
j k2min$jk ,j l%50 or j k. j l leading to j k2min$jk ,j l%5jk2j l .
With this last resultCm can finally be written as

Cm~qI 1 ,...,qI m

j 1 ,...,j m !5dS (
l 51

m

qI l D e~a2/6!(k51
m

( l .ku j k2 j l uqI k•qI l,

~B10!
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which for instance form52 reduces to Eq.~A39! and which
is being used withm53 and 4 in Eq.~A46!, ~A47!, and in
Sec. III.
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