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A Landau free energy is derived for the weak segregation redki@R) of melts belonging to a

very general class of statistical multiblock copolymers, referred to as “multiple segment-type
statistical multiblock copolymers.” Copolymer chains in this class consist of sequences of up to
M=2 chemically different types of segments, organized into sequences of blocks of varying lengths
(molecular weights The possible sequences of blocks that are encountered in the copolymer chains,
as far as their type is concerned, are described by a first-order Markov process, while the block
molecular weight distributions of thedé types of blocks are completely arbitrary. The number of
blocks per chain is assumed to be large. This class of copolymers is sufficiently general to
encompass all industrial relevant bulk statistical multiblock copolymers, such as all known
thermoplastic elastomers. The particular free energy considered is just one realization of an even
more general Landau free energy which is applicable to the WSR of melts of all conceivable
copolymers, including homopolymers and all possible blends. The derivation of this Landau free
energy is given in Appendix A. €1998 American Institute of Physid$0021-960608)50943-9

I. INTRODUCTION cal multiblock copolymers were considered, namely uncor-
Statistical multiblock copolymersalso referred to as related or ideal randg 7m copolymers and so-called cqrrel_a ted
random copolymer$3’ In the latter class the correlation in

polydisperse multiblock copolymegise an important class of h ¢ both ¢ h K h
industrially relevant synthetic materials. They are increas!N® sequences of both types of segments that makeup the

ingly being used as adhesives, compatibilizers, emulsifier£OPOlYMer chains is defined by means of a first-order Mar-
and in their bulk form as thermoplastic elastom@BE). As kov process, 1.e., via a>22_(stochast|§: matrix Of transition
the properties of these materials crucially depend on theiProbabilitiesp, with p;; defined as the probability of occur-
morphology, both in the molten and solid state, it is in par-fence of a segment of typaiven that the preceding segment
ticular their phase-behavior or thermodynamics which is imiS of typei. In the former class, on the other hand as the
portant to understand. This subject has received considerabf@me implies, these sequences are uncorrelated
attention during the last few years in the academic wbrfd. (Bernoulli—or zeroth-order Markov processt is clear that
The adjectivesstatistical or polydisperserefer to both  this ideal binary random copolymer system is just a special
the fact that the overall molecular weight of a chain usuallyexample of a correlated binary random copolymer system,
will vary from chain to chain and to the fact that the molecu-namely one wher@aa=pga=p andpag=pPge=9q=1—0p.
lar weight of the various chemically distinct types of blocks A particularly nice way of treating this class of correlated
that makeup thesenultiblock copolymer chains will vary binary random copolymers was introduced by Fredrickson
from block to block within each chain. However, the empha-et al? They showed that this class can be parametrized by
sis in this paper will lie on the latter form gfolydispersity  two parameters, namely the overall-segment or A-
The number of chemically distinct types of blocks in prin- monomer fractiorf and the parametet=paa+ pgg— 1, be-
ciple can be arbitrary, but the focus in the theoretical literaing the only nontrivial eigenvalue g (the other one is )1
ture up to now, has been on the important class of so-calletthis parametei varies between-1, corresponding to an
binary statistical multiblock copolymers, i.e., copolymer sys- alternatingAB-copolymer and 1, corresponding to a blend of
tems where the chains comprise of only two chemically dif-A- and B-homopolymers. The region-1<\<0 encom-
ferent types of blocks. Many of the commercial availablepasses multiblock copolymers with a tendency towards alter-
thermoplastic elastomers, such as the well-known polyestekation, while the region @\ <1 harbors multiblock copoly-
co-polyether family of TPE'se.g., PBT-co-PTHE fall into mers with a tendency towards blockiness. Finally the
this category. . _ ~midpointA =0 describes an ideal random copolymer. Binary
So far basically two important classes of binary statisti-g¢agistical multiblock copolymers for which the average mo-
lecular weight of both types of blocks is not too small cor-
dElectronic mail: Han.Slot@DSM-group.com respond to positive\ close to 1. In that case both block

0021-9606/98/109(19)/8677/24/$15.00 8677 © 1998 American Institute of Physics
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molecular weight distributions are always of the exponentiathird-, and fourth-order ideal intrachain correlation functions

or Flory type®®i.e. in the FHA. Of course it is known that such a Landau free
energy expansion has a limited validity, especially when the

(i=A,B), (1) FHA is adopted. Its validity is restricted to the WSR and in
particular to the immediate vicinity of the locus in the phase

wheren; is the average molecular weight of the blocks of diagram where the homogeneous phase becomes unstable.

type i. Such a distribution has polydispersity H=nZ/n2 Even in that region the use of the FHA excludes the possi-

~ 1, equal to I(corresponding to the more familid,, /M, bility _of stL_deing the occurrence of certain so-calladn- _
of 2). This situation is typically encountered when these bi—CIaSS'CaI (inhomogeneoys phases such as the gyroid

O . .
nary statistical multiblock copolymers are synthesized via ag]hasdé, thgtt.werefobserr]ve(:] n d'b.l?(.:k copolymer Telts. F%r
polycondensation polymerization procestarting from a € description of such phases It 1S necessary 10 consider

mixture of A- andB-monomers. However, in the synthesis of contributions to the Landau free energy arising from higher

many of the industrial relevant statistical multiblock copoly- Fourier modeshigher harmonickin the expansions of the

mers, the initial mixture or initial feedstock will also contain segmental order-parameter fiefdsAlthough strictly speak-

prepolymers of thé\- or B-type with a possible narrow mo- ng the approach which is fpllowed in the present Paper goes
lecular weight distribution which are to be build into the in fact beyond the FHA, in the sense that certain higher

copolymer chains. This can lead to block molecular Weightharmonlcs are accounted for in the expression for the free

distributions in the final multiblock copolymer system which fhnergy, quzs) n ISeﬁ. I, th;:s 'StEOt SUff'C:'?nlt to descnt:et
will deviate from the above mentioned Flory-type distribu- ese nonclassical phases. ror these mulliple segment-type

tion. This situation is of course not limited to binary statisti- statistical multiblock copolymer melts it is to be expecfed

cal multiblock copolymers and can also occur when the colhat the use of the FHA even becomes more restrictive if the

polymer chains consist of three or more chemically differenlreDUISIon between unlike blocks were to become larger, es-

types of blocks, a class which we will refer to from here on pecollglly for systems wittM >2. But, "?StRh/';SSO'C;"T_dntzr'
as so-callednultiple segment-typstatistical multiblock co- mediate to strong segregation regirf R the Landau

polymers. It is this generic situation which we want to ad_approach is totally inappropriat_e and _other approaches are
dress in the sequel. The rest of the paper is organized (%sked for such as theelf-c_0n5|st_ent field theor(SCFT
follows. In Sec. Il we will describe @oarse grainednodel method of Matsgn en SCh'.&ﬁ' It is, however, _at present
for these multiple segment-type statistical multiblock Co_unclear haw for mstan.ce th|§ last methc_)d, which hag up to
polymer melts which is sufficiently general to encompass allow been formulated in particular for diblock and triblock
industrial relevant bulk statistical multiblock copolymer sys- coponmer; meltls, can be extendgd tq the class of copolymer
tems. In this model the copolymer chains are allowed t elts that is of interest here. With this Landau free energy

consist of sequences of up td=2 chemically different one is thus able to calculate a part of the mean-field phase

types of blocks of varying molecular weight, where the pos_dlagram for multlple segmgnt-type st.at|st|cal multiblock co-
olymer melts with specific but arbitrary block molecular

sible sequences are described via a first-order Markov prd2 ; o . . .
cess. Then, in Sec. lll, we will develop a Landau free energ)yve'ght distributions. In_ a forthc_omlng pUb.“Cat']é‘nth'S IS
appropriate for the description of theeak segregation re- done for the case of binary s_tatlstlcal multiblock copol_ymer
gime(WSR) of these multiple segment-type statistical multi- melt$ (M =2) with SC“““Z‘Z'”_"_“ block molecular weight
block copolymer melts. In the WSR, i.e., just inside the ir]_dlstnbunons, where more specifically the influence of poly-

homogeneous region in parameter space where the deviati&%SperSity is studied. The particular Landau free energy here
obtained is in fact a specific example of a much more general

from homogeneity is still small, this Landau free energy can ; :
be expanded in a functional Taylor series in so-caed- Landau free_ energy, which can be used to desc;nbe the WSR
of all conceivable classes of copolymer melts, including ho-

mental order-parameter fieldsThese segmental order- | it d their blends. Thi | Landau f
parameter fields, which are a measure of this deviation fronh 'OPOYYMET MEILS and their biends. 1his general Landau free
gnergy is derived in detail in Appendix A. Finally, some

homogeneity, can be approximated in the WSR by simpl . . . .
g y Pp y P concluding remarks are given in last section, Sec. IV. In

sinusoidal functions of position in real space. It is in this o ) . -
so-calledfirst harmonic approximatiofFHA), that we will addition there is a second appendix where characteristic
) unctions of multivariate Gaussian distribution functions are

consider the above mentioned Landau free energy. The cé ) i L .
efficients in the Landau expansion are caletices and it calcullated, which we will be needing in Sec. IlIl and in Ap-
is these vertices which we need to determine. These verticegfendlx A.

as was shown by Leibler for the first time in his seminal
paper on diblock melt§>?° can be written in terms of so-
calledideal intrachain correlation functionsvhich measure
the spatial correlations in density of the various types o
monomers in the ideal copolymer melt, i.e., when the inter- In this section we will present a coarse grained model for
actions between the different types of monomers have beemultiple segment-type statistical multiblock copolymer
switched off. For the systems of interest in this paper, itmelts, sufficiently general to encompass all industrial rel-
proves to be sufficient to truncate the Landau expansion aftexvant bulk statistical multiblock copolymer systems. As this
the fourth-order terms. The main part of Sec. Ill, thereforemodel is just a particular realization of a model which is
will be devoted to the detailed calculation of the second-described in Appendix A for a general copolymer melt, we

1 n
Pi(n)EF exp{—%

n;

IIl. COARSE GRAINED MODEL FOR A MULTIPLE
SEGMENT-TYPE STATISTICAL MULTIBLOCK
fCOPOLYMER MELT
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will restrict the discussion in this section mainly to the ap-tistically independent distributions for their lengths is general
propriate description of the various different species ofenough to encompass all relevant industrial statistical multi-
chains which will be present in the systdspecification of block copolymer systems. As in general the matrix elements
the sequence distributipmand refer to Appendix A for other of w will be determined by the specifics of the underlying
details of the model. In this particular model the copolymerpolymerization process, we will consider them as input to the
chains consist of sequences of upMo=2 chemically dif- theory which is developed here. Similarly tide molecular
ferent types of segments, labeled by the varialle weight distributions are arbitrary in the sense that we will
e{1...M} and organized into a sequence of blocks of vary-leave the function®,(n),...,Py(n) unspecified in this de-
ing lengths(molecular weights The length of a block will velopment. Their statistical independence is barely an as-
be denoted by thécontinuou$ variable n. The variables  sumption, because from a chemical point of view, correla-
which is used in Appendix A to label the various species oftions in sequence will only occur at the monomer level. In
chains present in the system, is thus in this particular modeadeneral the reactivity of a monomer at a chain end is at most
a condensed notation for a given sequence of block molecunfluenced by one or two preceding monomers. At the level
lar weights of a particular type, i.e. of the blocks these correlations will have disappeared, espe-
cially when the various types of blocks have an average
s={(n,a1),(N2,@2)....(Ny @y )} @ bloc)I/< molecular weight Wr?/igh is not too small. The numbgr
where it is assumed that each copolymer chain consists of & ©f chains of types per unit volume will be proportional to
fixed number of blockdN,,, which will be taken sufficiently the probability of realizing the particular sequence corre-
large so that the final results are not influenced by this assPonding tos [Eq. (2)], i.e.
sumption. Next to that the theory becomes particularly

simple in this limit. The block molecular weight distributions pe= Walpal(nl)

of theseM types of blocks will be takemrbitrary and sta- Np2 W,
tistically independenti.e., described by non-negative func-
tions Pl(n) e 1PM (n) with X Walazpaz( nZ)Wa2a3 WaNb—laNbP“Nb( an): (5)

fman (=1, Va 3) where the factor in front ensures that the overall segment
“ ' ' density is unity, i.e.

It is clear form the notation that we will employ a continuous 1
representation for the copolymer chains, i.e., chains will be > psNg=——7—
. . . S NbEaW Ng
represented by continuous curves in three-dimenai). @
So, the various blockksee Eq.(2)] within a chain will be

discriminated but not the segments which makeup these XZ E 2 dnl f anb a,
blocks. The possible sequences of blocks one encounters in a2
Fhe various chams of the sy;tem, as fa_r as their ideftiipe) XP, (nl)Walaz' W e Pay (Ny)
is concerned, will be described by a first-order Markov pro- b T
cess, i.e., a stochastic process specified by the followng Np
XM matrix of transition probabilities { > nk} (6)

[ 0wy Wiy ] o

Wy, O Wopg In these expressions, denotes the average block molecular

weight (average lengthof the blocks of typex andw® the
4) so-called invariant probability of encountering a block of
type a in a chain. This last quantity will be given by tlgh
.0 Wi 1 component of the eigenvector of the transposed matrix of
’ transition probabilitie:'aivT belonging to eigenvalue 1, a result
1 which is well known from the theory of Markov chaifs.
wherew,; is the probability that the next block along the ~ We will end this section by introducing two quantities,
chain is of typeB given that the current block is of type ~ Which we will need in the next section. The first quantity is
This matrixw will in general be asymmetric. By construc- the overall fractionf,, of segments of typer in the system
tion the diagonal matrix elements are zero because a block €€ Eq(A4)]. This quant|ty can be expressed in terms of the
this description is the basic unit and, therefore, a block of dnvariant probabilities{w); «=1,..M} and the average
given type can only be followed by a block of one of the block molecular weightgn,,; a=1,..M} in the following
other types. Furthermore the sum of the matrix elements ifvay:-
each row will be equal to one, because each block in a chain
is always supposed to be followed by another @atdeast in f = W )
the Np— limit). This means that there will only be (M @y w‘;ﬁ '
—2) independent matrix elements. This description of the
possible block sequencéshaing in terms of a first-order In the definition of the ideal intrachain correlation functions
Markov process for their identities in combination with sta-[see Eqs.(A40) and (A44)—(A47)] the Ising-type variable

L Wm1 Wmz - Wmm-1 0
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o¢; appears, which indicates whether segnjenta chain of ~ free energy for such a melt of multiple segment-type statis-
speciess is of type a. In the present model this quantity is tical multiblock copolymers. This forms the subject of the

given by next section.
Np k—1 k
o= > Bara 9( i-> n|) — (9(]_2 n|) , (8 . LANDAU FREE ENERGY FOR A MELT OF
k=1 =1 =1 MULTIPLE SEGMENT-TYPE STATISTICAL

. . - . . .. MULTIBLOCK COPOLYMERS IN THE FIRST
with 6(j) a Heaviside step function. The function within HARMONIC APPROXIMATION

brackets is a block function, which is 0 everywhere except
for the kth block where it attains the value 1. The Kronecker =~ As was mentioned in the introduction, the most general
delta symbol, in combination with the sum over thg form of the Landau free energy for these copolymer melts is
blocks, simply selects those blocks which are of typ#®Vith  derived in Appendix A and is given by the final res(A60),

this last result we are in a position to determine the Landaue., by

Fu_ — - — —
T =min{ 53 3 [0.4(0) ~ 2XapIMa(DMe(~ D~ 52 3 2 Gupy(Q1,Go, U1~ 020,201+ )
my L «ha - - aBy oe¢ d1dz - - - - - -

><§;§(q1)§;3(q2)m,s(—ql)ms(—q2)mg(q1+q2)+21—4E > > ~0apys(d1,02,03, — 01~ 02— 3)
- - - T aByd efuv 419503 - 0T - T -
X 0e (01054 (92)9,,4(A3) 95, (|91 + G2+ Gs))Me( = A1) Me( = G2) M, (— Gg)M, (g1 + o+ Gg) +[1— 8(qs+p)]
) 1 T |+ BTG — U1 G s 0+ U)o ) T ()T
2/ 9ape(G1.92:~ U 42)9 0 (1911 d21)9yen (A3, — A1~ 02— 03,01+ 02)90e (A1) 9 (02)9,,.(A3)

XG5, (|91 G2t al)Mel = G Me(— G2 M~ 2)My(Aa + Qo+ ) +[1- A1+ da) 12 Gapul G192, ~ 91— )
X G (1d1+ As))gyan (A2, — 91— G2~ U3, 01+ 08) 9, (A1) 9 (03) 9,4 (A2) G5, (|1 + G2+ G )M — G1) M — G)
X, (= Gz)M, (A1 + Qo+ da) +[1= 802+ 3)]2 Gupu(d2:92:~ G2~ Ga) O (192 Gal)

X Gyan(d1,— A1~ G2~ 03,02+ 03) 9, (02) 93¢ (02) 9, (A1) G5, (|91 + A2+ A M — G2)Me( — ds)

Xm,(—=qy)m,(dq1+0,+93)

T35 2 2 2 9ap(000y5(02) 9,2 (A1) G5 (A1) T, (02) U5, (G2) Ml — Gr) M) M, (— G2)M, ()

aByd efuv 010

32 2 2 9a(00055(02) 8, (A1) 054 (02)9,,4(A1) T3, (A2) M — 1) Mg — G2) M, (41)M, ()

aBys euv 9192

t31 2 2 2 9asd1)9p,(02)9,2(A1) G5 (02) 9,4 (02) U5, (A1) M — Gr) M — A2 M, (G2)M,(Gy) 9

aByd epv q19;

where m,(q) is the (Fourier-transformedorder-parameter m,,(q) replaced by—E';";fma(q). The quantitiesjaﬁ(q),
field associated with segments of typeDue to the assump- 5a372q1,q2,—q1—q2) and _Eama(ql,qg ,0d3,— 01— 0>
tion of incompressibility(see Appendix A we have that —q,) are, respectively, the earlier mentioned second-, third-,
2.M,(q)=0 and so onlyM—1 fields are independent, 504 fourth-order ideal intrachain correlation functions. The
which we choose to beny(q),....my-1(q). The minimiza-  quantitiesg,,5(d1)9,5(d2) etc., on the other hand, are a part

tion, implied in Eg.(9), is over theseM —1 independent of the so-callechonlocal termsthat are typical for polydis-
fields with the remaining segmental order-parameter fielgperse copolymer melts and for which one can show in gen-

Downloaded 15 Dec 2005 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 109, No. 19, 15 November 1998 Slot, Angerman, and ten Brinke 8681

eral that they vanish once the number of segment types eXq. (9) the transformatlonma(q)—dg" llTaama(q) (a

ceeds the number of chain types in the systeffhese =1,..M) where T, is an element of the following\
various quantities are defined in Eq@40), (A43), and  x (M —1)-matrix:

(A45) in combination with Eqs(A46) and (A47). To reca-
pitulate - -

Gap( D=2 Psp(q. =),

(14
1 0
Exﬁy(gl,gz.—gl—gz)EE psgiﬁy(gl,gz,—gl—gz). 0 -0 0 1
s -1 . . . -1 -1
(10 - il
Gupys(d1,02,03, — 01— 02— 03) In the exprgssions to come we will gdopt the convention that
-7 - T Roman indices run from 1 t¥ —1, in contrast with Greek
S s indices which run from 1 tavl. The formal result of the
T < Ps9apys(91:92:93, = d1 =92~ a), application of the above transformation to H§) can be
written as
T A (A — s _ s _ F . 1
TRECAEMCRED R NS R B VLEm.n{(E)% S r@m@m(-a
{mg} ’ 2
W|th + g gc q%qa Fg‘?’b)c(91192193)
NS NS : : o
gzﬂ(gl’(}?)zfo diJO dj Ugiafje(aqu'gz/s)"_”, 11 XMy(G1)Mp(d2)Me(Q3)
1
+| o E E th))cd(ququanqO
9%5,(01.02.03) A 20t g1dss T
apy | '_ '_
EstdiJ'Nsdijsdkggigfjggk X Ma(01) Mp(02)Me(G3)Ma(Ga) | - (15
0 0 0
Xe(az/G){gl"}z“*J\*ﬁl"]z“*kﬁfh'gs“*k|}, (12

The coefficientd”d), I'®)., andI'(})._,in this expression are
and known as vertices and their specmc form can be inferred
from Eq. (9). The second-order verteB(,D1 2)(q) is given by

92pys(U1,92,93,94)

fmf djf dkf dl ool

x e(@%/6){d1-Qali—jl+ay-asli —k|+q1-qgli~1[}

Fﬁ(q)z;ﬁ [924(A) = 2Xap) TaaT o (16)

and the third-order verteK$})(d1,92,9s) by

216){q- dg)j — K|+ ap- Quli — 1| +aig-qulk—1[}.
x @(@/6){dz- dgli—k/+0p-agli~1+0z-aglk—Il} (13 Fé?c(gl,gz,ga)
=— o + + o' By , ,
In Egs.(11)—(13) a denotes the common statistical segment L%y a% (ql & q3)g By (ql 2 qg)
length. Finally the quantity, ; which appears in the second- _ — —1
order contribution td=, , is a generalized Flory-parameter, X8, o0 T575(02)9, () TaaT g e (17)

defined in Eq(A13). For the following discussion it is con-

venient to formally rewrite Eq(9) as a multivariate expan-

sion in the independent segmental order-parameter field&nd finally the fourth-order VerteRabcd(qlaQZ ds.d4) [see
my(q),...,my_1(q). This can be achieved by applying to also Eq.(A45)] by
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T ihedd1.02,03,04) = 275 E 8(q1+ 0o+ Qs+ Ga){ —Garpry 5(d1,92,03,0a) +[1- (g1 +7p)]
CY EY,B - - - - - - - - - -
X% Garpu(U1,02,— A1~ 0209, (|91 021) Gy 674(d3,0a, — Gz~ Ga) +[ 1= 5(d1 + G5)]

X 2}\ ga'ﬁ'u(glygsa_91_93)5,:3(|91+93|)5y'5w(92,94,_92_94)"’[1_ 6(q1+04)]

X E}\ 501’5’“(91194:_91_94)5;3“91—’—94|)§y’5'v(92193:_92_93) +6(9:1d2)

X 6(03104)9arp(A1)9, 5 (A3) + 6(A11+03) (92t 0a)Gar (A1) 9pr 5(92) T 6(q1+ )

X 8(GatG9) G (A1) 915 (02) |8,(0) 857 5(02) 8 (A3) T 5(0a) Tea T o T T - (18)

From Eq. (16) it follows that T'3)(q)=T{2(q), which  get the higher order contributions for the moment. If all these
means that the set of second-order vertices forms a symmetigenvalues are positive then it is clear that the minimum of
ric matrix. Such a matrix has real eigenvalues and can b€, is found form,(q)=0, Va, andVq, which also implies
diagonalifed by an orthogonal matiXq), i.e., a matrix for  thatm,(q)=0, Va, andVq. A result which follows from the
Wh'C(Q)S (9)=S'(q), whose columns are the e|genvectorsfact that S(q) is a nonsingular matrix. This minimum by
of I''“’(q). So, if we introduce a new set of segmental order-, .. .. =
definition corresponds to the homogeneous phase of the sys-
parameter field§m,(q)} defined by tem. If now the various - : i~
] . Sy-parameters are increased, for in
~ stance, by lowering the temperature when one is dealing with
ma(g)fg Sva(@)My(9), (199  a system of the UCSTupper critical solution temperatyre
type, one of the eigenvalueg? for someq, could pass
which we will refer to asmixedsegmental order-parameter through zero at some stage and eventually become negative.

fields, then Eq(15) can be transformed into In the Landau theory this so-called soft mode signals the
occurrence of a phase transition in which the symmetry of
F_= HS 2 );2 the homogeneous phase will be broken. Due to its rotational
v =mini (z) () M(@)(—0) - L e

i} a q invariance, it is an instability of this high-symmetry phase
involving all modes associated with a spherical shell of ra-

(L T® O, diusq, in Fourier space. The corresponding mixed segmen-

(3)a2c qlqEzq3 abel d1.0z.s) tal order-parameter fieltﬁ1|(g)EEaSa|(q)ma(g) is also

known as thestrongly fluctuating order-parameter fiefd
Whenever such an instability occurs, it is of course important
~ also to consider the higher-order termdin, as they will be
(2 2 Thhed91.92,93.9) necessary to ensure that the new minimunfofis finite.
abed il S These same higher-order terms will also caggeto shift
- - - - beyond the transition, ag, has to follow from the condi-
X My (1) My(d2) Mc(G3) Ma(Ga) ¢ 20 tions (OFL/09)q=q, =0, (9°FL/39%)|q=q, >0. The as-
sumption that only one of the eigenvalues ¥#)(q) be-
with {y?)(q); a=1,..M—1} the eigenvalues of®X(q).  comes zero at a some stage when say the temperature is
This last result fori= | shows that thesém,(q)} for eacha  |owered of a UCST system is physically correct, as there is
and eacly, can be interpreted as a kind of quasi-independenho reason to assume that there are degeneracies in the spec-
normal modef the system, similar say to phonons in real trum of [®)(q), neither caused by symmetry nor accidental
crystals. These modes are only independent as far as tiy nature. Although one cannot exclude the possibility that
second-order contribution td=, is concerned, because other eigenvalues will pass through zero at some later stage,
through the third- and fourth-order terms they are coupled tove will assume that when that happens it will be at critical
each other. points in they-parameter space which are located at a finite
The general idea of the Landau theory of phasedistance from the critical point where the homogeneous
transitions.’ as applied to these copolymer systems, is thaphase becomes unstable. As the low-symmetry phase in gen-
for small values of they-parameters all the eigenvalues eral will be space periodic, the sums over tigin Eq. (20)
{y(z)(q); a=1,.M—1} will be positive. In that case the will run over some appropriate reciprocal lattice. To dis-
second-order contribution will be dominant and we may for-criminate between a genemgvector and an element of such

X Ma(q1) My(d2) Me(da)
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a reciprocal lattice, we will use a capitol vect@r for the 12 2 Al

latter. From the above discussion it is clear that infinitesi->4¢ 4 a(Q)‘Q;q* o,
mally beyond the phase transition ali(Q) with |Q|=q, - T =

will acquire a nonzero value, whereas all otfief(Q) will X My(Q)M(Q2)Mi(Qs),

remain zero. In the Landau theory each member of this parshare A (Q)=1-6,,8(|Q|—q,) restricts the sums ovex
ticular set{m;(Q); |Q|=gq,} is referred to as @rimary or- a ams *

der parameter while all other modesn,(Q), for which

I3(Q.Q:.Qx)

(21)

and Q to those values which belong to secondary order pa-

@ ) " rameters. Minimization of Eq21) combined with quadratic
7a(Q) remains positive, are referred to sscondary order  erms in the secondary order parametersin therefore,

parameters lead to secondary order parameters beyond the transition

The third- and fourth-order terms in the free energy notynich are proportional to bilinear products of primary order
only lead to a coupling between the primary order paramMyarameters, i.e.

eters, but also to a coupling between the primary and the

secondary order parameters. This last coupling implies thaA'a(Q)ﬁwa(Q)
as a consequence of the fact that the primary order param- h
eters will become nonzero beyond the phase transition, this AIa(Q)

will also happen with the secondary ones, despite the fact = — 2(2—)(Q)\ ; | ; fg??(_9y92193)
that the corresponding second-order termB irfavor a zero Ya Q2= Q!
value for these secondary order parameters. As we do not  Xm;(Q,)M(Q3). (22

want to go beyond fourth-order terms in the primary order

parameters in the expansion Bf , the only relevant cou- With the help of this result we can eliminate the secondary
pling terms are those third-order terms which are linear in therder parameters in the expansionFaf and retain only an
secondary order parameters. These terms can collectively lexpansion in terms of the primary order parameters. This

written in the following way: expansion is given by
iEmin{i 7?2)(q*)'rﬁ|(Q)r~n|(—Q)+i ; ; T17(Q1,Q2,Q2) M (Q1) M (Q2) M (Qa)
Vo (2! o=, - =7 3N QiFa, Q=a, 130, R - - -
1 ~ ALQ)
2 T4(0,,0,,05.0,)—3 -
" \91%(1* \92%% \ng* |94§=:q* [ {Q1.92,Qs. Q) za: % ¥2(Q)
XTH(Q,Q1,Q)TH(-Q.Q; .9;;)} ﬁ1|<91>Fn|(<;z>Fn|<93)Fn.<<_z4>} : (23

Not all of the different space-periodicrystallinelike struc-  example which we will use in the rest of this section is the
tures that are conceivable in three-dimensi(@®80 in totaj BCC (body centered cubjcstructure. So, a WSR low-
are possible candidates for the low-symmetry phase. The regymmetry phase will be characterized by

son for this is that, for instance, the third-order term&jn m(Q)#0, VQeH, (24)
due to the presence of the Kronecker defgQ.+Q, B -

+Qs) [see Eq(17)], only couple those three primary order where H denotes the set af-vectors of lengthg, which

arameters for which the sum of the correspondin belong to one of these particular reciprocal lattices. For in-
P P %tance for the BCC structure, whose reciprocal lattice is the

Q-vectors ans up tf) Zero, |..e.,. where the th@eectors FCC (face centered cubjdattice, H is the set consisting of
form an equilateral triangle. Similarly the fourth-order terms;,o following twelveQ-vectors:

only couple four modes for which the sum of the four

Q-vectors adds up to zero. It is well-known that such com- 0 - 0 -

NI . +—(1,1,0', *=—(—-1,10',

binations of three and/or fouR-vectors, all having length ol V2

g, , only can be constructed in the reciprocal lattice of a

limited set of -periodic struct , h the bod

imited set of space-periodic structures, such as the body tq—*(o,l,l)T, tq—*(o,l,— 1T 25

centered cubidBCC), hexagonally closed packe@HCP), o) )

and lamellar microphasé$2! They can also be constructed

in certain quasi-periodic structures, such as the icosahedral Oy T Oy T
. +—(1,0,1)", *=—(1,0~-1)".

microphas® or the so-calledandom wave structuré The V2 V2
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The ansatz Eq(24) is known as the first harmonic approxi- where¢ and y®)(q, ) are defined by
mation (FHA). Now, each of the primary order parameters

m;(Q) can be charac?tenzed by an amphtu@@ and a phase . _ E 2 2 5(Q1+0Q,+Qy)el(#a* %0, 90)
¢q- As the set of primary order parameters needs to be in- QeH GeH GgeH  —7 77 ©
variant with respect to the symmetry group of the low- (29
symmetry phase, in particular its point-group symméetoy and
tations and reflectionsit follows that the amplitude\q, for
eachQ e H should be the same. Therefore, ER4) can be (3)
written more specifically in the following way: (Qx)=— E 90py(Q1,Q2,Q3)
2 _
m(Q)= \[ﬁ A e9sQ-Q"), (26) XZa1(0x)Zp1(Ax ) Zy1 (A (30)
< o h R
with

wheren is the number of elements &f. The factor/2/n has

been introduced for convenience. ﬁs(—(_)) should be the .,

complex conjugate ofn,(Q) [to ensure thai,(x) and con- Zai(0)=2 > 9,45(0) T gaSa(0y)- (31)
. = oo B a

sequentlym,(x) is a real quantity; it follows that the phase

—Q should be minus the phase @ i.e..¢-0=~¢0.  Although it seems from Eq(30) that 4, throughg,z,,
Equatlon(26) has to be considered as a trial function for depends o®;, Q,, andQs, and therefore, should be a part
m(Q) with A, {¢q} andq, , for a given choice oH, i.e.,@a of the summand of Egq.(29), it follows that
given symmetry of the low-symmetry phase, as adjustablaaﬁy(gl,gz,gs) only depends on the innerproducts of
parameters whose value follows from a minimization of thethese thre€- -vectors[see Eqgs(10) and (12)]. This implies
Landau free energy with respect to these parameters. If Wmatgaﬂ,/ is independent of the particular triple Q-vectors
now substitute Eq(26) into Eq. (23), the second-order con- consideredas long as they form an equilateral triangiad

tribution becomes consequently thajq(g) is independent of the particular struc-
(2) ture. , on the other hand, does depend on this structure. For
T_y'(Z)(q*)Az' (270  instance in the case of the BCC structure, where one can

show that on the basis of rotational symmetry either all
irrespective of the type of low-symmetry phase, i.e., irrespecphases are zero or equalabo {is equal tox (+ when 7(3)
tive of H, while the third-order contribution leads to is negative and- wheny, (3) is positive the number of equi-
lateral triangles ofQ-vectors which can be formed withid
FE 2y (g A gles oyt |
(28) [Eq. (25)], i.e., 8% 3!. Finally the fourth-order contribu-

v 3n\/_ ' tion can be written as

SR .

~ == 2 2 2, X elfartee e ) yi¥(Q1,Q,,0:,Qu) (32)
V 6n Ql E % Q46H — - = =

with
yf“)(Ql,Qz,Qg,QnEwEw 8(Q1+Q2+Q3+Qy) —Eaﬁya@l,gz,gs,@wg 9us0(Q1,Q2, Q1 Q)

ng&v(gsan_Qs_QO[l_ o(Q1+ (_?2)][5;1/1(“_?1‘F Qz|)_Yl>\y(|Ql+ Q)]

+E 9apn(Q1,Q3,—Q1—Q3)9,5,(Q2,Q4,— Q2— Q[ 1— 5(Q1+Q3)][9 (|Q1+Qsl)
_Y;\V(|Ql+93|)]+% 9apn(Q1,Q4.— Q1= Q4)9,5,(Q2.Q3,— Q,— Q3)[1- 8(Q; +Q4)]
X[@{,}(|Ql+Q4|)—YLV(|91+Q4|)] +6(Q1+Q2) 6(Q3+ Q4)Fap(Us ) 9,594 )

+6(Q1+Q3) 6(Q21+Q4)9uy(0x )9ps(ds ) + 8(Q1+ Q4) 6(Q2+Q3)945(0x ) 95,0 )

Xzal(q*)zﬂl(q*)zyl(q*)Zﬁl(Q*)i (33)
where the matrixY'(q) which appears in this expression is defined by
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Ay(9) with
Y'aﬁ(onzg gy Zea DZ6al Q- (34

(0, ;h11h21h3)5a%5 §aﬁya(91,92,93,94)

In Eq. (33 the fourQ-vectors all have the same lenggh
and only give a contribution whenever their sum is equal to XZa(04)2Z41(0,)Z,1(05)Z5 (i) (39
zero. Therefore, one can show tha$”(Q:,Q,.Q3.Q4)  ang
only depends on the mutual orientation of these four vectors,
which can be described by the following three parameters: —
D,(q, sh#0)= ;5 2 Gapn (0 ,0e VPO
aBy v

(Q1+Q2)? (Q1+Q3)? (Q1+Q4)?

W' hZEW1 h3E (q*)z ngé‘v(q* O ,\/Eq*)[giyl( \/ﬁq*)

(35) — Y}, (Vha, ) 1241(0, ) 251 (95 ) Z,1(G)

thﬂ(q*)!

hlE

These three parameters are not all independent as it follows
thath,+h,+hz=4. Thus Eq.(32) can be rewritten as D,(q, :0)

F& a4 _ => 9050059y ) Za1 (04 ) Z51 (A4 ) Z51(A4 ) 251 (),
\; = 6n? > 2 > > o teetegteq) py? S " T (ZO)
QeH QeH QeH QueH _
(;) ) ) ) where g,4,(0, 0. ,\/ﬁq*) is a shorthand notation for
X%y 1h1,hz,h3), (36) 9ap(Q1,Q2,—Q1—Qz)  with  [Q4]=]Q;|=q, and

¥(Q1,Q,) given by cofL(Q;,Q,)]=h/2—1. The function
with yf‘”(q* ‘hy,h,,hs) @ complete symmetric function of ® (a4 ;hy,hy,h5) can still be simplified further by using
its last three arguments. If two of these arguments are zer&dS-(10) and(13), which leads to
then the corresponding set of vectors has the fo€nQ,
—Q,—Q) and if only one argument is zero, it has the form ®1(q, :hy.hy.hy)
(Q;1,—Q;,Q,,—Q,). The corresponding phase factor for ~ = * ' 1273
these situationsy{*)(q, ;0,0,4) andy{*(q, ;0h,4—h), is Ne (N [Ne [N
always equal to+1, as oppositeQ-vectors have opposite => X PSJ dij dJJ dkf dl ogobio0?d
phases. A phase factor equal+td can only occur when all “Bro s 0 0 0 0
three h-parameters are nonzero. For the BCC structure one X @@ 161Q- Qi =+ Q- Qali K|+ Q- Quli— 1]}

can show, using Eq24), that Eq.(36) becomes
X e(@101Q- Qli K|+ Q- Qgli —1]+Qs- Qulk—1[}

FY

v A2

Y|(4)(q* ,0’014)_,’_% ‘Y|(4)(q* 1011,3) xZa|(q~k)Zﬁ|(q*)zy|(q*)zﬁ|(q*) (41)

If we now split the quadruple integral in this expression into
twenty-four nested quadruple integrals, i.e., for which the
integration variables are ordered such &g <k<lI etc., one
finds after some rearrangements that this set of nested qua-
druple integrals can be divided into three subsets consisting

1 (4) 1 (4)
+ g ’)’| (q* 111112)+ 1_2 ’)/l (q* 101212) . (37)

From the structure of Eq.(33) it is clear that
(a4 ;h1,h,,h3) can be written as

Y¥(a, ;h1,hy,hg)=—®1(q, ;hy,hy,hg)+Py(ay ;hy) of eight nested quadruple integrals, such that all nested qua-
druple integrals within the same subset give the same contri-
+®5(q, sha) + Py, sha) (38 bution tod,(q, ;hy,h,,hz). Thus it follows that:

3 Ng Ng Ng Ng
ERUIUNUSURER) U0 o5 N BT T B B TRR R
t=1 aBys s 0 i j k

X @Bl + (Dl + (17007 (4, )24(0,) 2,10 ) 21 (Ge)

=®,(q, ;hy) +P1(qy ;ho) +P1(0, ;). (42)

By a similar split and rearrangement one can showdhdy, ;0) Eqg.(40) is equal tod,(q, ;0)+2®d,(q, ;2), sothat finally
yﬁf)(q* :h;,h,,h3) can be written as

Downloaded 15 Dec 2005 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



8686 J. Chem. Phys., Vol. 109, No. 19, 15 November 1998 Slot, Angerman, and ten Brinke

(4)(q* 'hy,hy,h3)=d(q, ;hy) +®(q, ;hy)+P(q, ;hs), The meaning oﬁaﬁ(q) is that of the Fourier-transform of
(43)  the function that describes the spatial correlation between an
a-segment and @-segment in the copolymer melt in the
absence of interactions between the segments, i.e., in the
ideal copolymer melt where the chains obendom walk
®d(q, ;h)=—d4(q, ;h)+Py(q, ;h), (h#0), statistics In Eq. (46) the double integral along the chains has
(44) been split in two in such a way that the continuous
integration-variablegandj’ have become ordered. This ex-
plains the superscrip in 52/3(‘1) If we now substitute Eq.
(8) in Eq. (46) and perform the integrations, it easy to see
With this last result, Eq(37) for the BCC structure reduces that thisﬁ‘;ﬁ(q) can be written as the sum of following two

where®(q, ;h) is defined by

(D(q* rO)Ezq)l(q* 12)

to parts:
Fi¥ 1 2 8 2 % Suu | d kd i
TEA“ 5 ®(0,50)+ 3 ©(q, ;1) 9op(Y)=0ap2 Ps e j I'e
1 Np Np
+3 P02+ 3 <I>(q*,3)+24<1>(q*,4)] +§ Psglgk%ak%,a'
J 2 2 1 e (0 sy )
=AY =3 @4(0, 1D+ 5 Pi(Q,12)— 5 Pa(0413) xfc djfc dj’e 0", (47
n 1
2 . :
CI>1(q*;4)+§<D2(q*;1) where we have introduced the cumulative lengtfi

=3K_,n, and have changed to the varialylea?q?/6. The
interpretation of this last result is evident. The first part is the
+3 @205 12)+ 5 Po(0, 33)+ 55 ol ,4)] contribution to theap-correlation from the case where an
a-segmentj and a B-segmentj’ are located in the same
(45 block, while the second part arises from those cases where
these segments are located in different blocks vyithj’.
If we consider all the contributions to the Landau free energyWe will now consider each contribution separately. Let us
in the first harmonic approximation separately, it is clear thabegin with the first term. By shifting the integration variables
what is left is to determine the following four functions@f overny_, the double integral can easily be calculated
and/orh: g,5(a), %¥(d), Gup,(a.a.Vha), and®4(q;h).
Other such functions which appear in the free energy, such MM iy Mk 1-e Y
as ¥12(q), z.(q), and ®,(q;h), can be determined once f djf dj’e Ty Ty (48)
we know the first four. Quantities liké Eq. (29) and the

phase-factors in Eq36) have to be determined for each and, therefore, by using Ed5) and the definition of the

low-symmetry phase separately In the rest of this section Wesum overs’ [see Eq(6)], this contribution to Eq(47) can

will determine ga,B(q)! ’)/I (q)a gaﬁy(qu,\/_Q), and be written as
®,(q;h) for the particular system of interest, i.e., the melt of

multiple segment-type statistical multiblock copolymers with
arbitrary block molecular weight distributions. Np

Nk 1—ey”k)
) ) ——
aﬁzs pskgl a,ak( y y2
A. Determination of g,,(q)
The first quantity we will determine is the second-order —=_ E > dnl
ideal intrachain correlation functiog,s(q), which is de- NbE Nyk=1'ay a ay,
fined in Egs.(10) and(11). This correlation function can be .
written as X fo annglPal(nl)Wal‘IZ'“WaNb—laNbPaNb(an)
0. =q° +0° ne 1—e¥
Uap(A)=005(0) +93,(), |5, . (_k_ ° ) 49
kLY y
with ) . .
" " Now by using the property that each row in the matrix of
—o — Sd-J' i’ o oP e (@B i), transition probabilities Eq(4) adds_up to one and the _fact
9ap(@) 2 Psf : i 1 75i7s) that each block length distribution is normalizdgh. (3)], it

(46) follows that for a given term in the sum over thig blocks,
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say thekth one, ever)Pal(n,) with | #k will be integrated to ith _f dne-ynp 50
one and every, ., Wwith >k will be summed to one. w aly)= 0 ne o), 50
Therefore, we end up with

Sup where we have made use of E@) in combination with the
sz— 2 {2 2 E W Waya, " We 1a] fact that the invariant pI’Obablllt}Wﬁ satisfies> W7 V8
o B SO that each term in the sum over g blocks sim-
mean (n)(ﬂ— 1-e7 ) pIy givesw?, and the whole sum, therefor&l,w®. This
@ y? leaves us with the calculation of the second contribution to
_ R Eq. (47), which is slightly more involved. By a similar shift
fo (”a 1- a(Y)) of the integration variables and a little algebra it follows that

=Oap n,\y V2 this part can be transformed into:

a; @z k-1

Np Np

Nk n S
2 pSE E 6a,ak6ﬁ’a|j dJJ dj,eiy(] 7]+n|c—17nﬁ—l)
0 0

S k=1 1>k

S < Nk n
E PSE 2 Oua 5ﬂae y(ny_y nk)[j dj e‘Y(”k‘j)HJ dj’e—Yi'
k=1 >k kP 0 0
1 No .
= 0 .o
B NbE},W y kzl gk a21 ;2 % dnl J;) anbWalpal(nl)Walaz WaNbflaNbPaNb(an)
1—e YN -1 1—e Y
X 5a'“k5.3'“| T (e_yzm:k+1nm) T . (51)

From the structure of this last expression it is clear that in the contribution for a givehgradk in the double sum over the
blocks, all block length distributiorfs’am(nm) with m<k andm>1 will be integrated again to one, and ajllmflam with m>1
summed again to one. Therefore, this last result can be rewritten as

1 Np Np
NbEng/Fy g‘l IZK {;1 ;2 rg'l W“lwalaz ) Wakla]

0 1—eynk
<| | dnk( )Pamk)
0 y

X E Wa|_2a|_1[ JO dnlle_ynllpa|_1(nl1):|Wa|_l/3

a -1

oo
—yn
> Waak+1[ fo dng, e Y%, (Nyg) |

Ak +1
= [1—e Y™
[anf22"
0 y

Pﬁ(nl)} (52

which is equal to

1 Qa1 a(y>>(1 ﬁ(y)) o
NbEyWyny kE]_ gk ( y y a%l ‘1'%2 ‘YIEl [Waak+1ak+1(y)]

X [W‘lk+lak+22¥k+ Z(y)] : .[Wa|7201|71&| —l(y)]wa|7lﬁ

Cfe [1ma\ [1-BY) | & . (1-ay)|[1-By)
T e [ D e L

2

Np—k—1
’ > 9<y>i}~v=v} ,
]=0

ap
(53)
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where  we  have introduced Qaﬁ(y)zwaﬁfﬁ(y)
=3 W, {¥(y)8,8}=[W-L(y)].s. Which by construction

Slot, Angerman, and ten Brinke

where we have made use of the fact that the ti@eeectors
in gaﬁy(Ql,Qz Q3) form an equnateral triangle, so that

obeys|QaB(y¢O)|<1. Thus for large enough, this last
result is approximated by

f

e (R B0 5 ]

fo [l—a(y\(1-By)| )
:H_a( y ) y )[{vy LoL(y)} Mg (59

By adding Eqs(50) and(54) we obtain the following result
for g4(y) in the limit of largeNy:

Q1 Q:=Q,-Q3=Q;-Q3=—13q" with [Qy|=|Q,|=]Q;|
=q. As Eq.(57) involves a summation ovet, 8, andy of

an expression which is completely symmetric in these indi-
ces, it follows that we can split the triple integration along
the chain into six triple nested integrations, which all give
the same contribution te{*), i.e

ap

Ng . Ng i Ng 3 .
YIy)=—6> > psf djlfj djzfj dJsUsjl‘ng2
1 2

aBy s

X O'gjseW(j37]1)Za|(Y)Zﬁ|(Y)Zy|(y)

fo(Ne 1—a(y)
Poply)= g = (—— —2—)
Y =63 Gy, 0Y 222, (60
fa 1_&(y) 1_,3()/) “
W_a( y )( y ) Tas¥) (59

where we introduced againy=a?g%/6. To calculate
@ﬁy(y,y,y) we first substitute Eq.8) and perform the inte-
grations. This results in

where we have introduced the particular propagator
Waﬁ(y)z[{\/:vil_ I;(y)}il]aﬁ

With  Los(y)=a(y) g (56)

agﬁ'y(y!yvy)

(3) Np
vi~’(q) c
’ S S [ dh{ oy, S,

The second quantity we need to determineyj@(q), =
which is defined fogq=gq, in Eq.(30). With the help of Egs. [ f
X 5a’“k5ﬂ'“|57'am

B. Determination of n¢
Cl djz
-1
(10) and (12) this quantity can be written as
Ng  [Ng  (Ng W
7|(3)(Q)E_2 E Psf djlf dlzf dlso'sj U'fj O'gj
aBy s 0 0 0 1 °%2 >3

_ 20216V i 0 — ol 4|1 o il £ [ a — i
x @~ (V2@ lis—ial *liz-isl+li1~lsliz (@)

-1

dJs"’E Cm dla]
m>1 Jng

e Yis~iv, (59)

Soﬁzﬁy(y,y,y) can be written as the sum of four contribu-
tions

XZﬁI(Q)ZyI(Q): (57)

o y i [ dis [ i vis-in
ga[gy(y,y,Y)E(SaB%yz ps> S | diz| dj| djze¥sTh
S k=1 0 j1 i2

Np Np
+5a52 psz E 50‘% Y‘me djlfj djzf djze” y(iz—i1+nm_;—ng_y)
1

Np  Np

Nk . Mm m . T c _.C
L T T B TR
2

k=1 m>k
f dllf dlzf djge YUs it M1 My,

where the original global variablgs, j,, andj; have been transformed to local block variables. By using the definition of the
cumulative Iengtmﬁziﬁln, we can factorize the last three triple integrals in E8f) into contributions from each of the
separate blocks labeled frokto m>Kk, i.e.,

n n n
[ e[ "aia [ "ai; e
0 i1 0

n n ) m-1 Nm )
:|:J’ kdle kdeeY(nkjl):||: H e |:f djaefyb = —
0 i i=k+1 0

Downloaded 15 Dec 2005 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

Np Np Ny

+2 pSE E z 5aak5[3a| v,

11>k m>I

(60)

ne Y m1
—yn

1—e‘y”k}
y y?

i=k+1
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m—1
f djlf djzf dj3e yis J1+nm 1 nk ﬂ—[f d] e Y= Jl)H e Yhi [f dlzf dj3e vis
: -: iz
1—e Y m-1 ﬂme—ynm 1—e YMm
: —} " Y } (62
y i=k+1 y y
"k i Mim i i c c
f d]lf djzf dj3e_y“3_]1+nm71_nk71)
0 0 0
n -1 m—1 .
- fkdjle_y(nk_jl) IT emine) I] e jmdjae—yis
° 1=k+1 i=1+1 0
1—evn][ =1 m-1 —
- Il e [mey”'][ [] en (63)
y i=k+1 =141 y
Finally the first triple integral in Eq(60) only involves an nested integration over ki block and leads to
’ " " o M (1+eY)  2(1-e Yk
fkdjlj kdjzf “djy e viamiv= K : )2 ° ). o
0 i1 io y y

Recalling again the definition gfs Eq. (5) and that of the “sum oves’ [see Eq(6)] it is easy to see, in analogy with Egs.
(49) and (50), that the first contribution to Eq60) results in

Np
8,50 1)
af ,8725 pskgl a,ay

n(l+e V%) 2(1—e Y%
y? y?

Np

1)
— aB ﬁ*/
sz E E E 2 dnl f anb al nl)Walaz Wy

=1 a; ap

(nN)

Np—

[ (nk(1+ey”k) 2(1—ey”k)”
5:1/ ay 2 - 3
y y

8,50 No o n(l+e Y% 2(1—e Y%
= _aBThY N kE > WO W a, ak_la} fo ana(n)( 5 - ;

NpZ WoN, k=1 | o @3 as y y
fa Fa a’()’) 2(1_a(Y)) . ~ “ _
=5aﬁéﬁyﬁ—a v v v with a’(y)z—fo dnne Y"P (n). (65

The remaining three contributions to E@§0) can be determined using Eq$.1)—(63) and following a similar set of steps
which led from Eq.(51) to (55). The result for each contribution can simply be obtained by the following prescription. Start
with the Kronecker delta with the “lowest” block index, i.eﬁ,wk in all three contributions. This Kronecker delta implies that
the term which depends am, should be averaged ovér,(n). Then “propagate” to the next Kronecker delta in line by
replacing for instanceé,,, akE:\‘;’k[Hl o€ YN8, o 1N the limit of N,—c2, by the propagatorr,s(y) Eg. (56), followed by
averaging the term depending apover P4(n). Repeat if necessary this propagation step until the last Kronecker delta is
encountered. Finally multiply the resulting expressmm\kg/NbE W n,=f »/Npn,, originating fromp, Eq. (5), and cancel

the N, in the denominator by the dummy sum over the bloél&é’l WhICh is still left. The final result forgaﬁy(y v,Y),
therefore, becomes

fo [P &'(y) 2(1-a(y)) a'(y)  1-a(y) 1-(y)
@By(y,y,y)=5a35ﬁyﬁ— )2 ayzy - y:c;y }+5aﬁﬁ— ayy + ;;y way(y){ ;y}
fo [1—a(y) B'(y) 1-B(y)| fa.[1-ay) . 1-My)
byt | e e ﬁy}—ﬁ— - waﬁ(ynﬁ'(y)]wﬁy(y)[ 'y”} (66

C. Determination of g,z,(q,q,vhq)

This third-order ideal intrachain correlation function appears in the fourth-order cogﬁijq‘i@(lq;hl,hz,m) [see Egs.
(38 and (40) with g=q,] in the Landau free energlf, and is a shorthand notation f@,;,(Q1,Q,,—Q1—Q,) with
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|Q1|=1Q2/=g and<(Q,Q>) given by cop(Q;,Q,)]=h2—1. As the length 0Q3;=—Q; — Q. is given by\/ﬁq, it follows
that Q,- Q,=(h/2— 1)g? and Q2-Q3=Qs- s=—(h/2)g?. Thus by using Egs(10) and (12) and changing again to the
variabley, gaﬁy(y y,hy)= gaﬁy(q q,+/hq) can be written as

o Ne (N =~ (Ns = PP o S
gaﬂy(y,y,hy)zz psfo djlfo djzfo dj3(fsjlo'§j20-gj3e Y{(1=hi2)[jy = ol +(h2)|ja— g+ (h2)li1—]sl} (67)

If we now split the triple integral into six triple nested integrals according,; t0j,<j; etc., we obtain

Yo (YY) =005, 1YY, DY) + 050y (V.Y NY) 0550 oY,V hY) + 05,5 AV, Y. NY) 005V, Y) +03y0(Y.Y0Y), (68)

whereg?, 5(y.y,Y) is given by Eq(66) with 8 andy interchanged and whetg, ;. ,(y.y,hy) andg; ., o(y,y.hy) are defined
by

Gopya(y.y.hy)= E psf djlf djzf djsogiol; o e Y27 lithiamial (69)
J1 2

and

90,2y, y.hy)= 2 psf dJlf djzf djsog; of ol e YlaTizthiz i), (70)
J1 J2

The determination oﬁzﬁ%l(y,y,hy) proceeds along the same lines as thaﬁg;gy(y,y,y) in the last subsection. First we
substitute the expressions for tls, Eq. (8) into Eq. (69) and perform the trivial integrations over the Heaviside step
functions originating from these’s. The result is a sum of four contributions similar to E6O), i.e.

Ny

n n n . . . .
CIRCRREIL NS S S T T BTSN
‘ s k=1 " Jo i1 iz

b
05 03, 3 [t [ i
1

Np  Np

Ny Nm Nm . . . .
+ 5.372 psz 2 5a,ak557amj dJlJ dJZ ) dJa efy{J2711+h(]3712)+nﬁ1_17nﬁ_1}
s k=1 m>k 0 0 i2

Np Np Ny

+E Psz 2 z 5aak53a| Y f dllf szf djse” iiz=i1+h(iz=i+n_;—ng_y+h(ng_;—nf_}

=1 I>k m>|

(71)

Then each of the triple nested integrals is evaluated and the result for the last three of them is written as a product of terms
belonging to separate blocks labeled fr&rto m>k [similar to Eqgs.(61)—(63)]. Having derived these factorizations we can

again apply the prescription, described at the end of the last subsection, to obtain the final expreiﬂgg’l(qr,y,hy),

which reads

fo
g?zﬁy,l(y!yrhy) 0ap0py n_

N, 1th &hy &) } st

hy?” h2y® T RI-hy? (T—hy3| " Or

1 _ay) ahy
hy? " (1-h)y?> h(1-h)y?

1-¥(hy) fo [1—a(y) B(Y) B(hy)
*Tar(NY) —hy }”’”E y Tt Ry T Iy h(l—h)y"l
fo[1-a(y) B(hy)—B(y) 1—%<hy>
Ty ™Y Ty }”M(h”[ hy } (72

YVe do not have to determi@lﬁ%z(y,y,hy) Eq. (70) separately, as it is easy to see that it is equajﬂtp%l(y,?,ﬁf/) with
y=hy and h=1/h. This identification obviously breaks down fbr=0, but this case is excluded anyhdsee Eq.(40)].
Therefore, it follows that:
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fo[Ne 1+h  a(hy) a(y) fo 1 aly) &(hy)
G YOV =0und 1 | Ry h2y3+h2<1—h)y3‘<1—h>y3} e W*(l—h)yz‘hu—h)yz}
1-y) fo [1- a(hy) 1 By B(hy)
X””(y)[ oo | Ty e )[ T a-hy? h(l_h)yz}
f, [1—a(hy) B(hy)—B(y) 1-3(y)
.| hy }”“B(hy) any ™Yy ) "

This last result in combination with Eqé72), (66), and(68) completes the determination @‘lﬁy(y,y,hy).

D. Determination of ®,(q;h)

The final quantity which we need to determinetig(q;h), which is also part ofyf“)(q;hl,hz,hg) as shown in Eqs43)
and(44). It is defined forq=q, in Eq. (42) and can be written as

®,(y;h)=8 BEﬁE;ﬁya(y;h)zm(y)zm(y)zy.(y)za.(y) (74)
aBy
with
N
Gopys(Yih)= E sz dJlf szf djs deshoszcfs’bcrsue Yilz=iathliz =g s~ lal, (75
J1 J2 i3

This gaﬁw(y;h) can be determined in the same way@%y(y,y,y) or gaﬁ%l(y,y,hy) in the last two subsections, albeit at
the expense of a bit more algebra. For instance when the expressionsdts (Beare substituted in Eq75) and we integrate
over the Heaviside step-functions appearing in th€sewe end up with the following result:

Np -,
Bprayi=3 o> [ dilH s [ " i }U st S - djs]

3

= Ne_1 1>k -1
dej4+2 p jat 8, . 8,08 . 85, e Yiz-it+hio=ig+is=ial (76)
it p ) a,aq YB,a) %y, 1

which leads to a sum of eight contributions instead of six as in(&@. or Eqg. (71). In evaluating this quantity we have to
consider the situation wheteis equal to 1 separately, because in that case the argument of the exponential does not depend
onj;. We can determinégﬁyﬁ(y;h) for generalh and subsequently take the limit bf— 1, but it is just as easy to take

=1 in Eq.(76) and redo the calculation. The result fo# 1 in the limit of N,— reads

n, 1+2h a(hy) (3—2h)a(y) a'(y)

L1
Ly AT TR A-nAS T (A-hgye +(1—h)y3}+5‘*ﬁ5ﬁyﬁ_a hy®

a

gaﬁy&(y h)=6,505,0 2 hy?
a(hy) (2—=hya(y) a'(y) 1-3(y) fo 1 a(hy)
“ha-nas (1—h>2y3‘<1—h>y} Tasl )[ T oas00 5 |hy? h(1-h)y?
a(y) 1 Hhy y) fo [1—a(y) 1 B(hy)
+<1—h>y} ar(h )[ hy? h(1—hy? " (1- h)y} MRt v ke v e
(-hBy) B | fa[1-ay) Bty —By)| 11 Hhy)
A—h2y?®  =hy? "o n, Ty ™Y T ashy | Y Ry hii—hy?
y) fo[ 1 &y a(y) Y(hy)—H(y) 1-3(y)
+<1—h>y2}+ 8, [hy? h(I-hy? * (T=h)y? (hy)[ (1-hy }”W’ { y }
L5 fa[lay) B(hy) B(Y) . B'(y) 1-5(y)
R I K T e E A e T K B
fo [1—a(y) B(hy)— B(y) Y(hy) = Hy) 1-8(y)
i e e L e v

and forh=1
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foz Fa 3(1_&()/)) 2&'()/) &”(y) foz
gggy(s(y;l):%ﬁ%ﬁyaﬁ—a v v V3 + 2y2 +5ap5,eyﬁ_a
fo

1-3(y)
y +5aﬁtsy5ﬁ_a

1-8y) B'(y) B'(y) fo
YV RV }_%F_a

1—0;(y) N a'(y)
y y

1-a(y) a'(y) a"(y)
y® y> 2y
1-(y) N Y'(y) fo

|+ —
2 B
y ByYy n,

!

1-a(y)
y

1-(y) &’(y)}

1—&(y)+ a

y2 Wa'y(y)

Y)}

X Waé‘(y)[ )(/

1-« n
%} Tapg(Y)[B' (Y)]mg,(Y)

+—
y y

X Waﬁ(y)|:

fa

— aan
a

fa

By na

1-a(y)
y

[1—?5(y)

} 71-oz'y(y)[ :}’, (y)] 7T'y5(y)

1-3(y)
y

1—"5<y>}

waﬁ(y>[/§'<y)]wﬁy<y)[‘y'<y)]w<y)[ v

1.
X waﬁ(y)[g B”(y)} ’”',85()/)[
(78)

IV. CONCLUDING REMARKS The coefficients of| in this FHA are known as vertices and
the main object of this work was to determine these vertices.
Summarizing, in this work we developed a LandauThis can be done analytically as these vertices can be written
theory which can be used to determine the phase behavigf terms of so-called ideal intrachain correlation functions,
(stability of possible microphasesf melts belonging to a which measure spatial correlations in density of the various
very general class of statistical multiblock copolymers, retypes of segments in the ideal copolymer melt, i.e., when the
ferred to as multiple segment-type statistical multiblock co-interactions between the different types of segments have
polymers, within the weak segregation regifWgSR). This  peen switched off.
class of copolymers, which is sufficiently general to cover all  The general expression of this Landau free endfgy
industrial relevant bulk statistical multiblock Copolymers was derived in Appendix A using a coarse grained model for
such as all known thermoplastic elastomers, is characterizegl general copolymer melt by methods of statistical mechan-
by chains containing a large number of blocks, of whichics. It involves the most general description of a polymer
there areM=2 chemically different types. Each chemically melt in that it encompasses all possible regular and statistical
different type of block is assumed to have(rormalized  copolymers, including homopolymers and all possible
molecular weight distributiof® ,(n) (¢=1,...M) which can  plends. This derivation is a generalization of the one given
have any shape. The possible sequences of blocks which a¢ Fredricksonet al? for the binary correlated random co-
encountered in these copolymer chains are, as far as thgiblymer system and avoids the use of replica methods to
type is concerned, described by a first-order Markov procesgope with the quenched disorder in the copolymer chains.
i.e., by a matrix of transition probabilities Eq. (4). Further- As the current theory is genuine mean-field theory, fluc-
more there is no correlation in lengtimolecular weight  tuations in the various order-parameter fields are neglected.
between different blocks within a copolymer chain, nor be-|t js known, however, that these fluctuations are important in
tween blocks belonging to different chains. As blocks arecertain statistical multiblock copolymetsThus it is to be
sequences of segments, there dtechemically different expected that this will also be the case for the more general
types of segments present in the system. Interactions betass of statistical multiblock copolymers which is consid-
tween unlike segments within a chain or between unlike segered in this work. These so-called fluctuation corrections will
ments belonging to different chains are taken to be pairwisge considered in future work.
and described in the usual way by a segbf(M —1) Flory
x-parameters. As the melt is assumed to be incompressiblACKNOWLEDGMENTS
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grained deviations of microscopic segment densities fronhs) Research for their permission to publish this work. All
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inside the inhomogeneous region in parameter space whefgents concerning the applicability of the first harmonic ap-
the segmental order-parameter fields are still “small,” theproximation.

Landau free energlf, can be written as a functional Taylor
expansion in these fields, or more precisely their FourierAPPENDIX A: FORMAL DERIVATION OF A LANDAU
transformsm,(q) (a=1,...M—1). These segmental order- FREE ENERGY FOR A GENERAL COPOLYMER

parameter fields can be approximated in the WSR by simplé/'E'-T
sinusoidal function of position in real space. This approxi-  In this Appendix we will present a formal derivation of a
mation is known as the first harmonic approximat{&iA). Landau free energy for a general copolymer melt. General in
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the sense that the copolymer chains may consist of arbitrargy integrating these densities owéiwe obtain, respectively,
sequences of monomers or segments of which therdvlare the total number okx-segmentdN, and the overall number
chemically different sorts present. So, both the compositiorof segments\ in the system. This last number can be either
distribution and the sequence distribution as well as the ovemritten as> N, or as 2.n;,Ng. Thus the fraction ofa-

all length (molecular weight distribution of the system are segments is given b, =N_,/N. Without loss of generality
left arbitrary. This encompasses all possible regular and stave will choose our length scale in such a way that each
tistical copolymer systemgbinary, ternary, etg, but also segment has a unit volume and therefore thatV. In that
homopolymers and all conceivable blends of these system=ase it follows that:

(homopolymer—homopolymer, homopolymer—copolymer,

etc). A related derivation for copolymer systems for which — | d3xp(x)=1, (A3)

the sequence distribution of the segments is described by V -

Markovian statistics has been given by Panyukov and .

Kuchanov? but in contrast to this derivation our derivation and thatf,, can be written as

does not rely upon the use of the replica metiaahd is 1

more general as far as the sequence distribution of the seg- f,= v j d3xp,(X). (A4)
ments is concerned. In fact our derivation is a generalization v

of the one given by Fredricksaet al” for the binary corre-  |n order to account approximately for the effect of excluded
lated random copolymer system. volume due to the repulsive nature of the intrachain and
To describe this general copolymer melt we will employ interchain potentials at short distances, we will assume that
the typical coarse graining one usually encounters in polythe system isincompressiblgi.e., that the overall micro-
mer physics® Consider a melt ofi; copolymer chains in a scopic segment density is not only equal to 1 “globally,” as
volumeV. As these chains consist of arbitrary sequences ofn Eq. (A3), but also “locally,” that isp(x)=1,VxeV. As
up toM chemically different types of monomers, the numbergyr aim is to derive a Landau free energy for this copolymer
of possible chains is astronomically large. To denote thenelt of M quasi-componentswe need to define a set o
various different species of chains present in the system, Wgrder parametersor actually M order-parameterfields to
will use the labels. Each chain belonging to specissof  describe the possiblmhomogeneous phases the system
which there areng present, will consist oNs monomers or  and to be able to calculate their free energy. These order
segments. /segmentalso and interchangeably referred to asparameter fields can be defined by coarse graining the fol-

a monomey consists of a piece of the real polymer chén  |owing set ofmicroscopic order-parametefields
number of real monomerschosen in such a way that the

chain will behave as random walk on the scale of such a #,(X)=p(X)—f,, (a=1,..M). (A5)
segment. In other words at that scale the chain will appear t
beflexible whereas at smaller scales it will s&ff. TheseM
chemically different segments will be labeled by Greek low-
ercase symbolg, B, etc. running from 1 tdvl and we will .
assume without loss of generality that the statistical segment 2, #(X)=0. (AB)
lengths(Kuhnian lengths of these various segments are all “

equal and denoted by. To specify a given chain speciss  The interactions between the various segments in this co-
Ising-type variablesrg; will be introduced witha=1,..M  polymer melt can be described in terms of these microscopic
andi=1,...Ng in such a way thatg;=1 when segmernitis  order-parameter fields. This can be shown in the following
of type @ ando ;=0 otherwise. The conformations of the  way. Under the assumption that segment—segment interac-
chains belonging to specieswill be specified by the begin tions are pairwise additive, the total interaction enetthpf

and the end positions of the corresponding segments thgte system is given by

make up these chains, i.e., the set of three-dimensional vec-

tors {Ry,i}mi With m=1,...ng defined with respect to some N1 a« B s _ pt

origin O in V. The total set of these vectors, i.€BS }smi v zazﬁ sEmi % 75i7 Uap(Rmi ~ R}, A7)
defines a configurationahicrostate of the whole system. ) . ) )

Such a microstate will be denoted byA function G which ~ Whereu,(x) is the interaction potential between a segment
depends on these microstates, i.e., a so-catie variable  Of type @ and a segment of typg, which is assumed to be
will be written aséEG(y). Examples of important state short _rang‘]‘ed in space’.’ Althoug_h formally thl_s last expression
variables which we will need later on are theicroscopic  CONtains “self-energy” terms, i.e., terms with=p, s=t,

a-segment density,(x), defined for eaclxe V by I=m, andi=j, we will not bother to explicitly exclude them
o N in the notation used in EqA7). It is easy to see that this

total interaction energyJ can be written in terms of the
specific microscopic segment densitiegx) [Eq. (A1)] as

Pt is clear that due to the incompressibility assumption only
M —1 of these fields will be independent, as it follows that:

i)a(x)zgn)i ol (x— R, (A1)

and theoverall microscopic segment densj through ~ - A
bic S€9 i) throug U=13, | o Jvd’*y Uas(X—Y)Pa(0PsY),  (A8)

b(x)zg Pa(X)=2 8(x—RS)). (A2)

smi which for a short-ranged,(x) becomes
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0=13 0p | 85007400 "9
with
o= [ dxu00). (A10

By eliminating one of the's, saypy , from Eq.(A9) using
> .P.(X)=1 and substituting ,(x)=,(x) + f,, one ends
up, apart from a constant term, with

U= %gg {€ap—€am—€pmt fMM}JVdsx‘Af’a()-()‘A/’B()-()'
(A11)

where the accent implies that both sums run from IMto
—1. In terms of the set of Flory-parameter€ between the
different segments, i.e.

€4aT € .
Xap=€ap— TBB with Xaa:01 Va, (A12)

this U can finally be written as
E%EB, {Xa,B_XaM _X,BM}J'VdSX#/fa()_() 1/’;3()_()

E_aEﬁ’ }aﬁfvdsxzjja(x) l’r}/ﬁ(x) (A13)

For the binary case M=2), the only remaining
Y-parameter,y,;, then reduces to the more familiaf,.

Slot, Angerman, and ten Brinke

z=]] fdSRﬁﬂg(l_;,)e—ﬁoezgﬁ}aﬁf\/d3x%<x)ibﬁ<x>_
smi JV
(A16)

In this coarse grained description incompressibility, which is
due to interactions at the molecular level, has to be explicitly
accounted for via a delta function. Given this partition func-
tion, the first thing we will do is transform it, in four steps,
into a form which is more suitable for further analysis. The
first step involves a formal shift of the state variable depen-
dence of the second exponential in E416). This is done

by introducing the followingunctional decomposition of the
identity into Z:

I f Dy, 8(,— h,)=1, (A17)

where [D ¢ denotes a functional integration over the scalar
field ¢, and leads to

z=II’ f Dy e* X apl VaX o (X) (%)
14

xI1 Vd3Rﬁnie*'*oa<1—ﬁ>lj S — ).

(A18)

The second step involves substitution of the followfagc-
tional spectral representationfor the M “delta-functions”
in the above expression

5(1_;))EJ’ D|Oeifvd3xlo(>_<){1—;3(>_<)}

Having introduced the interaction energy of the copolymer A )
melt, the final ingredient we need before we can write down  §(,— l/,a)zf DI e/ va™Xla(){¥a() = Pa()}

the system’sartition function Z is the Hamiltonian H, of
the system in absence of these interactionsuAgerturbed
chains in a melt obeyandom walk statisticsthis Hy can be
defined via the followingnormalized statisticalveight be-
longing to an ensemble @aussianchains

. Ns (1 Ng—1
efo=]] I 15 II o(R%i-RW (. (AL9)
s m=1 i=1

with g(x)=(3/2mra?)%? exp(—3x%/2a?). In this expression

there is a factor M to account for the center-of-mass posi-
tion of each of then, chains. This brings us to the starting

(a=1,.M—1), (A19)

resulting in

z=1I" f D i, € ap¥ap/ VXX U5(x)
14
Xf Dlo[]" fD'keuv‘ﬁx{'°<¥>+2;Ia<x)wa<x>}
A

<11 vdsRﬁ“ e Hoa— 1 /va3x{10(0p(x)+ 21 (0 ()}
smj

point of the derivation of a Landau free energy, namely the

system’s partition functiorZ or more precise the system’s
configurational partition function Z, i.e., the sum of the

(A20)
In the third step the auxiliary integration fieldig(x),

Boltzmann weightsver all allowed states of the system. The [ (x),...,Iy-1(X) are transformed to new fields

set of all allowed states furnishes the so-calitate space or
configuration-spacd” of the system, which in this case is
given by

F={RS}smlp(X)=1, VxeV}. (A15)

J1(X),....du(X), defined in the following way:
J(X)=1,(%)+1o(x) (a=1,.M—1)

Im(X)=lo(X).
Using this isometric transformation and E¢&2), (A5), and

(A21)

As we are ultimately .only. interested in differences in free ag) it is easily verified that the following two identities
energy between possible inhomogeneous phases of the sygy|q:

tem, all combinatorial terms will be left out of this partition

function since they only lead to constant terms in the freq o(X)b(X)+E’| (X)(}, (X)

energy. With this in mindZ becomes
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, R This can also be written as
=In(X0)+ 2" 1(X)pu(X) = 2 Fodo(X),

1
(A22) G=> In f d3R§nl-~~f d*Rin, v
’ m \% \%
o)+ 2" 16(0) #a(¥) =3 () + 2 Ja(X) talX), ° -
a [e3 s _
. 3 ~sm
and, therefore, thaZ can be written as X 11;[1 9(R}y,j+1— Rye el va™xda0p, ) - (A30)
! r = 3
z=11 f D i, €% apXapl VXV ¥) From a closer inspection of this last expression it becomes

clear that because of thés-fold integration over th& vari-

5 000+ T} ables (which, therefore, have become dummy variaples
Xl:[ f DJye=el Vi et Val ST e each term in the sum oven for a given chain types, i.e.,
each term in the sum over all chains of a given type in the
x(e 1% vd3xJa(z<>t3a(z<>>o_ (A23)  system, gives the same contribution@o Therefore,G be-
comes
In this expressioR---)o, denotes an average with respect to
the unperturbed ensemble of chain conformatiaesined by s s 1
fo. ie. 6=3 nin [ aRe | Ry
A)o= f dRS, e oA, A24 Nt _ <
(A=, | 4°Rn hz x T1 g(Rj 41— Ry)e el v™t0mi, (A3
j=1

The last step in the transformation Bboils down to rewrit-
ing the integrand of Eq.(A23) using the fields wherep®(x) is defined by
J1(X), ..., du(X), defined by

~ 1 ~S ()= sy D 5
Ja(x)EJa(x)—deSyJa(y) (@=1,.M). (A25) Pal0=2 053X~ R), (A32)

It is easy to see that the use of these new fields in conjunc¥hich clearly is equal to
tion with Eq. (A4) will eliminate the term in Eq(A23) in-

volving f,. Thus we finally end up with GIE ne In(e‘:’%
S
Z=T1' | Dy e upXapva*xta(X) 450
1;[ j W with
i3 [ya3X3, () ¥, (X) + G R ) ~ -
L 128 o=-i3 | 30080 (A33)

with G defined b
y Now by introducing the number density of chains of tygpe

GE|n<e*izaivd?’fJa(X)ﬁa(K))O_ (A27)  ps=ns/V it follows that G can be written as:

In order to be able to extract a Landau free energy from Eq. A i

(A26), we will need to analyze this last quantity a bit further. G=V, ps IN(€®s)o=V(In(e*))q. (A34)
This part, however, forms the essence of the whole deriva- s

tion of this free energy. From the definition ¢f--), Eq.

(A24), in combination with Eq(A14) it follows that: In this last expression the second average with substtiigpt

a disorder average, i.e., an average over the quenched disor-
1 der in the copolymer chains. More important this quenched
G=In 151 VderSnl'”J’vdSRﬁsz V] average involves the logarithm of a quantity proportional to
the partition function, as can be seen from E@s26) and
A 3~ ~sm (A34), and therefore, it is the free energy that is being aver-
X H 9(Ry, j+1— Rmpe = v 0 (A28)  aged over the disorder. To calculate the average of the loga-
= rithm of the partition function one can resort to the replica

Ng—1

where use has been made of the decomposition method?? but this is not necessary for the kind of quenched
disorder one encounters in statistical copolymer systems, as
Pa(X)=2> pSM(x) will be shown now.
sm As the Landau free energy for this system involves an
with expansion up to the fourth order in the order-parameter fields
{,(X)}, the thing to do is to expan@ up to the fourth order
IA?ZmQ()EZ TES(x—RS,). (A29) in @. The reason for this step will become clear in the pro-

cess. The result is
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G~1 ~2 1 ~3 1 ~ 4 (= ')3 E c®
V=3 (@D0hat 5 (@ohat 55 ((8%)o)a K(@%0)="gyr 2 2 Gh(91.92.9
1 ~ ~ ~
-5 (@), (A35) *Ja(81)35(92)3(%s). (Ad2)
N .. with
where we have used the fact tai)y=0, a result which is
easily derived with a little bit of algebra. Let us first con5|der6(3> (qlqu ,Q3)
the second-order term. By using H&33) it follows that:
=58(g,+qy+ S .2,
K(@o)e=~13] | o[ @330 (G102 G0 2 ps0(0.92.95)
=8(A1+ A2+ 93)9upy(91,92, — 91— G2) (A43)
X2 psPE0PFY))os (A36)
s and
which by invoking the Fourier-representation @f(x) Eq. 1 1 )
(A32), i.e. 52 {(@0)a g (&%)0)d
1
8 (X)=— @ qig- (x—R)) 4
o= 2 X o€ R, (A37) _ (=D
VA g =oar > 2 GUsar, )
T 20V S auians ,375 01,92.93.94
can be written as ~ ~ ~ ~
XJa(gl)‘]ﬁ(gZ)J'y(93)‘]é(g4): (A44)
» SRR
5 {(@)0)e= Sz aEﬁ % Ja(a)Jp(a") whereGYY) ,=G{)re9— G with

4
R R G(aﬁ)ryeag(Q1:92793,94)
XE 2 Ps‘TSJ SJ it Fi)o,

(A3 =0(d1+ G2+ Qo+ 0a) 2 PGys( 192,92, 9a)

Where\NJa(q) is the Fourier-transform &a()_(). The unper- E5(91+92+93+94)§a575(91,92,93,—91—92—93),
turbed ensemble average which appears in this expression,

i.e., (e (@R R) is a two-point characteristic function and

of a multivariate Gaussian distribution function and is calcu- G@n

lated in Appendix B. It is equal to apyolG1:92.:93,G4)

—i@R+a" Ry = s(q+q’ e @O~ A
(e TR A 0=0(g+a")e (A39) 5(91+92)5(93+94)§S: Ps955(d1,92)955(03,94)
In this last expression the delta function is in fact a Kro-
necker delta symbol because due to the finiteness of the vol-
umeV, the allowed wave vectors form a discrete set. This
Kronecker delta symbol expresses the translational invari-

+68(q1+03) 6(gz+ 94)253 Ps95,(01,03)955(02,94)

ance of the system. Now by introducing +8(qy+Ga) 5(92+93)§S: 95925(91194)9733/(92193)
G )(Q1 Q)= 5((11"'(12)2 Psgaﬁ(fh d2) =6(01+d2) 3(d3+94a)9ap(d1)9ys(d3)
= 8(Q1+d2)9ap(d1), +6(91+03) 892+ 02)Yay(d1)9ps(d2) + (A1 +dg)
o X 8(0o+03)d, . A45)
with - g%4(01.02)= % o8’ e w @Ol (a40) (e 308 00)95,(9) (
J In this last resultG$})}5(ds1.92.93,94) has been symme-
this second-order contribution 1 becomes trized. This contribution tG%) ; is a part of the so-called
(—i)2 nonlocal term which is typical for polydisperse copolymer
0% o)g= =7 2, > G2 B(ql,qz)Ja(ql)\]B(qz) melts and which vanishes once the number of segment types
AR 9192 (AdL) M exceeds the number of chain types in the systéBoth

the quamitieSQzﬁy(ngz,%) and 93575(91,92,93,94) in-
The third-order and the two fourth-order contributionsGo volve higher order Gaussian characteristic functiwes Ap-
can also be written in such a form, namely as pendix B and are given by
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955(01.02,93) J(0)=3,(9)— (0 8(), (A48)

_2 o&ab, oy (@’/6){ay- dali—j|+0p-qali —k|+ar-asli —k} in other Wordgla(q)EJa(q) forq#0 andﬁa(Q)EO. There-
fore, by restricting the sum oveg in expressiongA41)—
(A46)  (A43) to g+#0, we can simply change thiis herein toJ's.

and Symbolically we now can write the expression féras
92py5(d1,02,03,94) G 1 i
VE ) Gazb)vavb"' 6 Gg{rfn)cvavbvc
_Z %l ol e 8y il e e~k a i)
1
+ = G ValpUclq » (A49)
Xea/6{(_12'(_13|j*k|+‘_12'(_14“*|‘+Q3‘Q4|k*|\} (A47) abcd a”bTeTd

The functions g,4(q), gaﬁy(ql,qz, —Q2) and  where we have introducedomposite labels &(q#0,a),

gaﬁys(ql,qz,qg,, 01— 02— q3) are, respecnvely, referred b= (qq&O B) etc. and where),= a(q)/V Furthermore the

to as second-, third- and fourth-order ideal intrachain correEinstein summation convention has been used. By Fourier
lation functlons because they are density correlation functransforming all the integrals involving thgfields and mak-
tions of an ideal copolymer melt, i.e., a melt where the in-ing use of the fact that according to the definitiorﬁgfﬁ [see
teractions between segments have been switched off. As th#g. (A13)] Yyum=0, the partition functiorz, Eg. (A26) can
partition functionZ, Eg. (A26) involves a functional integra- be written as

tion over thelJ fields, while the three contributions ® Egs.

(A41)—(A43) all involve theJ fields, we need to transfor@ _TT1’ V{T apMamme}
to the former kind of fields. This is most easily done by 2_1:[ Dmce*HaaiZg[ m], (AS0)
recalling that from the definition of ,(x) [Eq. (A25)], it
follows that: With Yab=Xapd(A1102), My=t,(—0q)/V and
zolm=11 J DvheV{imaua—(1/2)G(Z>vaub+(|/6)Gabcuaubuc+(1/24)Gg@cduaubucud}_ (A51)
h

For large values of the system’s volurkle Zg[ m] can be evaluated with the well-knoveaddle-point methqd.e., approxi-
matingZg[ m] by

Zg[m]=e""™, (A52)
where Q[ m] is the stationary value aim,v,+ (G[v]/V) with respect to the set afs for which the absolute value is the
smallest. This stationary point is a solution of the following set of equations:

1 (4)
= Gapedblectq=0, Va. (A53)

im,— G(z)v + Gabcvbvc+6

2
Which in vector notation becomes
1 .
im=G® v+ 5 vt = Gl vw=0. (A54)

As we ultimately want to arrive at a Landau free energy as an expansion up to the fourth ordemifidhis, we only need
to solve this last vector equation iteratively feup to the third order irm. One can easily verify that the solution is given by

v=iG® . m— E(:;?D 1.CE;<3>:((=3<2>’1.m)(g(2>’1'm)+'Ec=;<2>’1.c55<3>:((=3(2>’1.m)(§<2>’1'(53<3>:(c=;<2>’1~m)
- i - . -
X(G? " m) -5 6@ 6 G L m) (G m)(G® ) +O(m). (AS5)

If we now substitute this result back info[ m], then after some rearrangement we end up with
O[ml=-36? mm+i6@:H (G m(G® (G m+ A6 (6P m(G® T m(G® m)
X(g(Z) )—lG (3): (G(Z) m)(§(2)_l.r_n)(c=;(2)_ .CE;(S):(Q .m)(g(Z)_l.m)). (A56)
Given this approximation t&@g[ m], i.e., Eq.(A52) with Eqg. (A56), the partition functiorZ thus becomes
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z=I1"' f Dm,eV{¥:mm+alm, (A57)

a

The Landau free energy, that is the free energy of the system withiméfaa-field approximatigrcan be obtained by again
applying the saddle-point method, but now to approximately evaluate this last set of functional integrals. If we write this result
as

Z=e (A58)

then thisF (in units of kgT) will be the Landau free energy we are looking for and equal to
FL . _ _ _
v =M G =2y kmm—iG (G m (G m)(G m)
m

—#GW (G m(6? L m(G®  m(6? L m+i6@ G (e m)(G? g

X(G2 L m) (6@ m))}. (A59)
The minimization in this expression is over thd—1 independent order-parameter fields, which we choose to be
ml(q) LMy - l(q) with the remaining dependent order-parameter figlg(q), expressed vmnM(q)— a(q)

we now use the definitions & ® [Eq. (A40)], G® [Eq. (A43)], and G(“)—G(“)reg G(“)”' [Eq. (A45)], thls Landau free
energy can be transformed into

F _ _
7=mm 22 E [925(A) = 2X ap]Mal @) M — Q) — 62 2 2 Gupy(1.92,— 91— 9208, (|91 + )

{mg}’ apB aBy def 010

XGos (A1) G5 (A2)Ma(— GOMA—GIM(A1 +02) + 75 2 2 > | ~Gupys(d1,02.93, G~ 92— )
afyd efuv 410203 - - -

X 9ae (01954 (92)9,,4(A3)95, (|91 + G2+ Gs) )M = A1) Me(— G2) M, (— Gg)M, (g1 + o+ ) +[ 1~ 8(qs+p)]

Xg Gapi(d1,92,~ 01~ 02) G r (|91+ Qo)) Gy (A3, — A1~ 02— 03,01 02) 9, (41) 95 (92) . (03)

XG5, (191+ A2+ Gs])Me(— A1) Me( = G2) M, (—d3)M,(qr+ G2+ qs) +[ 1~ 5(dy +3)]

XEx Exm(gl,gs,—91—93)§;x1(|91+93|)§y5x(92,—91—92—93,91+93)523(%)555(%)

XE;,}(Qz)Eng(|91+92+93|)me(_gl)mg(_93)mﬂ(_gz)my(91+92+93)+[1_5(92‘“_13)]

Xz}; §aﬁk(gz,93,—92—93)§ZA1(|92+93|)5m(91,—91—92—93,92+93)

X 90c(02)95 (43)9,,,: (A1) G5, (|01 G2 Gsl)Me( = d2)Me( — Gg) M, (—G1)M, (G + G+ 0s)

t35 2 2 2 9ap(008y5(02) 9,2 (A1) G5 (A1) T, 4 (02) U5, (G2) Ml — Gr) M) M, (— G2) M, ()

aByd epv q19;

T35 2 2 2 9ay(000p5(02) 9,2 (A1) G5 (02) T, (A1) U5, (G2) M — Gr) M —G2)M,,(G1)M, ()

aByd eépv 419,

T35 2 2 2 9asd1)9py(02)0,2 (A1) 95 (02) 0,4 (02) U5, (A M — G Me( —Q2)M,(G2)M,(G1),  (A6O)

aByd epv 419,

where we have symmetrized the terms involving the twoproblem, even though one can show tigdt)) is singular
third-order ideal intrachain correlation functions. Notice that(not invertible atq= 0 for the infinite system, due to the fact

the sums over the variougs in this last expression are no that by definitionm,(0) = ,,(0)/V=0, V. However, in the
longer restricted toq#O This is allowed and causes no second term of the first fourth-order contribution to Eq.
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(A60), the termg,(|a,+q,|) appears, which is even unde-
fined forg,= —q.# Q? Iet_aloneql=q2=(_). This is the rea-
son why we introduced the facfor—l_ﬁ(qﬁ— g,) in this con-
tribution toF . -

APPENDIX B: CHARACTERISTIC FUNCTIONS OF
MULTIVARIATE GAUSSIAN DISTRIBUTION
FUNCTIONS
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N
gz 0(i— 1) 01— H=min{j,ji} -1, (B7)

therefore,C,, becomes

i
The subject of this Appendix is the calculation of the Cm(?l ----- dm
following type of average over the ensemble of unperturbed

chain conformations

Coly ) =(e” 9B, (B1)
with g4, d,....0n M arbitrary wave vectors,

{jl,...,j_m}c{l,z,...N} m arbitrary segment labels, and
where(...)o is defined by Eqs(A14) and (A24). An ex-
ample of such an average is given by E439). As this

ensemble is described by a multivariate Gaussian distribution

function [see Eq.(A14)], this average is in fact am-point
correlation functionor more precisely am-point character-
istic functionof this multivariate Gaussian distribution func-
tion. Explicitly this correlation function is given by

j j 1 3 3 o 3 \*
Lo ——
Cm(91 """ ‘,‘nr;)_V fvd Ry fvd Rlejl 2ma

x e~ (32IF1-R)’e-EL R, (BD)

By introducing the following isometric change of variables:

u=R;

(B3)

UjERj_Rj*l (JZZ,N),

3 \3(N-1)2

27a’

N
. m
xf d3ue U maa | fd3uk
v k=2 Jv

w @~ (32222 ofuj + (233 6~ )q 12

o 1
(@62 =y [min{jyji} - Lay-ar —

=5 (B8)

q|) e~ (@)L S ) minfjy.jibacar

because each of thd—1 Gaussian integrals cancels one
factor (3/2ra?)%? in front and the integral ovew; vanishes
unless the sum over then g-vectors is equal to zero, in
which case the integral cancels the factbin the denomi-
nator. The fact that the delta function causs ;q,=0 is
the reason that the-1 in Eq. (B7) vanishes from the argu-
ment of the exponent in EqB8). Similarly by using this
same condition it follows that:

the argument of the product of the exponentials in the inte-

grand of Eq.(B2) becomes

3 N m j|
_EE sz_iz q- > Uk (B4)
j=2 =1- k=1
The second term can be written as
m i m m N
—i> g > we=—iug- > q—i> qi- > 60—k
=1 - k=1 =1 - (=1- k=2
m N m
=—iug- 2, =i Y {2 eu'—k)q'}
=1 - k=2|i=1 -
Uy, (B5)

where #(n) is a Heaviside step function. If we nowcbm-
plete the square by combining the last term of Eq(B5)
with the first term of Eq.B4), therefore, Eq(B4) can be
written as

o 3 ia? o z
—iug P2 9'_ﬁj§=:2 Uj+?|§1 9(]|‘])9|}
a2 N m m
—5 2 2 2 G Do), (86)
j=2k=1i=1-" -

It is easy to verify that

m

>

k=1

m
21 min{j .1}k a

m
=D
k=1

m

KaF+ >

min{jy,ji k-
& A in{ji,Jibakay

k=1

D>

k=1 I>k

> Lix=min{jijitlai:a
I#k

= lik=ilak-ar - (B9)

This last step follows from the observation that for a given
pair (k,I) with | #k one either has thg{<j,, in which case
jk—=min{jy.,ji}=0 or j,>], leading toj,—min{jy.ji}=ji—i -
With this last resuliC,, can finally be written as

m
Cm(jl """ jm):g( lgl)e(az/6)2?12|>kjkJ'||Qk'Q|,

(B10)
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which for instance fom=2 reduces to EqA39) and which
is being used witm=3 and 4 in Eq.(A46), (A47), and in
Sec. Il
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