5,529 research outputs found

    Theory of transient spectroscopy of multiple quantum well structures

    Full text link
    A theory of the transient spectroscopy of quantum well (QW) structures under a large applied bias is presented. An analytical model of the initial part of the transient current is proposed. The time constant of the transient current depends not only on the emission rate from the QWs, as is usually assumed, but also on the subsequent carrier transport across QWs. Numerical simulation was used to confirm the validity of the proposed model, and to study the transient current on a larger time scale. It is shown that the transient current is influenced by the nonuniform distribution of the electric field and related effects, which results in a step-like behavior of the current. A procedure of extraction of the QW emission time from the transient spectroscopy experiments is suggested.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    On the susceptibility function of piecewise expanding interval maps

    Full text link
    We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which guarantee that Psi(z) is holomorphic in a disc of larger than one. Although Psi(1) is the formal derivative of the SRB measure of f_t with respect to t, we present examples satisfying our conditions so that the SRB measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5. In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for these examples.Comment: To appear Comm. Math. Phy

    Collective motions in globally coupled tent maps with stochastic updating

    Full text link
    We study a generalization of globally coupled maps, where the elements are updated with probability pp. When pp is below a threshold pcp_c, the collective motion vanishes and the system is the stationary state in the large size limit. We present the linear stability analysis.Comment: 6 pages including 5 figure

    Noiseless Collective Motion out of Noisy Chaos

    Get PDF
    We consider the effect of microscopic external noise on the collective motion of a globally coupled map in fully desynchronized states. Without the external noise a macroscopic variable shows high-dimensional chaos distinguishable from random motion. With the increase of external noise intensity, the collective motion is successively simplified. The number of effective degrees of freedom in the collective motion is found to decrease as logσ2-\log{\sigma^2} with the external noise variance σ2\sigma^2. It is shown how the microscopic noise can suppress the number of degrees of freedom at a macroscopic level.Comment: 9 pages RevTex file and 4 postscript figure

    Perturbation theory for self-gravitating gauge fields I: The odd-parity sector

    Full text link
    A gauge and coordinate invariant perturbation theory for self-gravitating non-Abelian gauge fields is developed and used to analyze local uniqueness and linear stability properties of non-Abelian equilibrium configurations. It is shown that all admissible stationary odd-parity excitations of the static and spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have total angular momentum number =1\ell = 1, and are characterized by non-vanishing asymptotic flux integrals. Local uniqueness results with respect to non-Abelian perturbations are also established for the Schwarzschild and the Reissner-Nordstr\"om solutions, which, in addition, are shown to be linearly stable under dynamical Einstein-Yang-Mills perturbations. Finally, unstable modes with =1\ell = 1 are also excluded for the static and spherically symmetric non-Abelian solitons and black holes.Comment: 23 pages, revtex, no figure

    Monopoles, Dyons and Black Holes in the Four-Dimensional Einstein-Yang-Mills Theory

    Get PDF
    A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and the ADM mass. The stability of the solutions which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a fractal structure as the cosmological constant approaches zero.Comment: 36 Pages, 16 Figures. Minor typos corrected and one figure modifie

    Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach

    Full text link
    We show how the scattering-into-cones and flux-across-surfaces theorems in Quantum Mechanics have very intuitive pathwise probabilistic versions based on some results by Carlen about large time behaviour of paths of Nelson diffusions. The quantum mechanical results can be then recovered by taking expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic

    Three-body correlations in direct reactions: Example of 6^{6}Be populated in (p,n)(p,n) reaction

    Get PDF
    The 6^{6}Be continuum states were populated in the charge-exchange reaction 1^1H(6^{6}Li,6^{6}Be)nn collecting very high statistics data (5×106\sim 5 \times 10^6 events) on the three-body α\alpha+pp+pp correlations. The 6^{6}Be excitation energy region below 3\sim 3 MeV is considered, where the data are dominated by contributions from the 0+0^+ and 2+2^+ states. It is demonstrated how the high-statistics few-body correlation data can be used to extract detailed information on the reaction mechanism. Such a derivation is based on the fact that highly spin-aligned states are typically populated in the direct reactions.Comment: submitted to Physical Review

    Excitations in the Halo Nucleus He-6 Following The Li-7(gamma,p)He-6 Reaction

    Full text link
    A broad excited state was observed in 6-He with energy E_x = 5 +/- 1 MeV and width Gamma = 3 +/- 1 MeV, following the reaction Li-7(gamma,p)He-6. The state is consistent with a number of broad resonances predicted by recent cluster model calculations. The well-established reaction mechanism, combined with a simple and transparent analysis procedure confers considerable validity to this observation.Comment: 3 pages of LaTeX, 3 figures in PostScript, approved for publication in Phys. Rev. C, August, 200

    ДОСЛІДЖЕННЯ ВПЛИВУ ХАОТИЧНОГО СТРУМУ ЕЛЕКТРОНІВ НА ПАРАМЕТРИ ЕЛЕКТРИЧНОГО ПОЛЯ У ПРИАНОДНІЙ ЗОНІ РОЗРЯДУ

    Get PDF
    The influence of the ratio of the discharge density and chaotic electronic currents on the potential drop in the diffusion zone near the anode was considered. The analysis of the influence of forced convection on the conditions of existence of a stable diffuse discharge on the anode surface was performedРассмотрено влияние соотношения плотности разрядного и хаотического электронных токов на падение потенциала в диффузионной зоне прианодной области. Выполнен анализ влияния вынужденной конвекции на условия существования устойчивого диффузного разряда на поверхности анода.Розглянуто вплив співвідношення густини розрядного та хаотичного електронних струмів на падіння потенціалу у дифузійній зоні прианодної області. Виконано аналіз впливу вимушеної конвекції на умови існування стійкого дифузного розряду на поверхні анода
    corecore