9,550 research outputs found

    Extra dimensions, orthopositronium decay, and stellar cooling

    Full text link
    In a class of extra dimensional models with a warped metric and a single brane the photon can be localized on the brane by gravity only. An intriguing feature of these models is the possibility of the photon escaping into the extra dimensions. The search for this effect has motivated the present round of precision orthopositronium decay experiments. We point out that in this framework a photon in plasma should be metastable. We consider the astrophysical consequences of this observation, in particular, what it implies for the plasmon decay rate in globular cluster stars and for the core-collapse supernova cooling rate. The resulting bounds on the model parameter exceed the possible reach of orthopositronium experiments by many orders of magnitude.Comment: 13 pages, no figure

    The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation

    Get PDF

    An experimental correlation of the nonreactive properties of injection schemes and combustion effects in a liquid-propellant rocket engine. Part II. Instrumentation, experimental apparatus, and experimental techniques

    Get PDF
    Apparatus, techniques, and instrumentation for experimental correlation of nonreactive injection schemes and combustion effects in liquid propellant rocket engin

    Symptomatic adrenal insufficiency during inhaled corticosteroid treatment

    Get PDF
    Symptomatic adrenal insufficiency, presenting as hypoglycaemia or poor weight gain, may occur on withdrawal of corticosteroid treatment but has not previously been reported during inhaled corticosteroid treatment. This case series illustrates the occurence of clinically significant adrenal insufficiency in asthmatic children while patients were on inhaled corticosteroid treatment and the unexpected modes of presentation. General practitioners and paediatricians need to be aware that this unusual but acute serious complication may occur in patients treated

    Social prescribing: community-based referral in public health

    Get PDF

    Evolution of Phase-Space Density in Dark Matter Halos

    Full text link
    The evolution of the phase-space density profile in dark matter (DM) halos is investigated by means of constrained simulations, designed to control the merging history of a given DM halo. Halos evolve through a series of quiescent phases of a slow accretion intermitted by violent events of major mergers. In the quiescent phases the density of the halo closely follows the NFW profile and the phase-space density profile, Q(r), is given by the Taylor & Navarro power law, r^{-beta}, where beta ~ 1.9 and stays remarkably stable over the Hubble time. Expressing the phase-space density by the NFW parameters, Q(r)=Qs (r/Rs)^{-beta}, the evolution of Q is determined by Qs. We have found that the effective mass surface density within Rs, Sigma_s = rhos Rs, remains constant throughout the evolution of a given DM halo along the main branch of its merging tree. This invariance entails that Qs ~ Rs^{-5/2} and Q(r) ~ Sigma_s^{-1/2} Rs^{-5/2} (r/ Rs)^{-beta}. It follows that the phase-space density remains constant, in the sense of Qs=const., in the quiescent phases and it decreases as Rs^{-5/2} in the violent ones. The physical origin of the NFW density profile and the phase-space density power law is still unknown. Yet, the numerical experiments show that halos recover these relations after the violent phases. The major mergers drive Rs to increase and Qs to decrease discontinuously while keeping Qs Rs^{5/2} = const. The virial equilibrium in the quiescent phases implies that a DM halos evolves along a sequence of NFW profiles with constant energy per unit volume (i.e., pressure) within Rs.Comment: 7 pages, 5 figures, accepted by the Astrophysical Journal. Revised, 2 figures adde

    SwSt 1: an O-rich planetary nebula around a C-rich central star

    Get PDF
    The hydrogen-deficient carbon-rich [WCL] type central star HD167362 and its oxygen-rich planetary nebula (PN) SwSt~1 are investigated. The nebular chemistry might indicate a recent origin for the carbon-rich stellar spectrum. Its stellar and nebular properties might therefore provide further understanding of the origin of the [WCL] central star class. The UV-IR stellar spectra are modelled with state of the codes and show ~40kK central star with a wind and a C/O~3, indicative of efficient third dredge-up. The synthetic stellar flux distribution is used to model the high density, compact PN, which has a solar C/O ratio, is still enshrouded by 1200K and 230K dust shells and, reported here for the first time, in molecular hydrogen. Although it appears that the change in C/O ratio has been recent, the published spectroscopy since 1895 has been re-examined and no clear spectral change is seen. If an event occurred that has turned it into a hydrogen-deficient central star, it did not happen in the last 100 years.Comment: 31 pages, 19 figures (some are gif files), MNRAS in pres
    corecore