56 research outputs found

    Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum)

    Get PDF
    Grain shape and color strongly influence yield and quality of durum wheat. Identifying QTL for these traits is essential for transferring favorable alleles based on selection strategies and breeding objectives. In the present study, 192 Ethiopian durum wheat accessions comprising 167 landraces and 25 cultivars were genotyped with a high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) wheat array to conduct a genome-wide association analysis for grain width (GW), grain length (GL), CIE (Commission Internationale l'Eclairage) L* (brightness), CIE a* (redness), and CIE b* (yellowness) traits. The accessions were planted at Sinana Agricultural Research Center, Ethiopia in the 2015/2016 cropping season in a complete randomized block design with three replications. Twenty homogeneous and healthy seeds per replicate were used for trait measurement. Digital image analysis of seeds with GrainScan software package was used to generate the phenotypic data. Analysis of variance revealed highly significant differences between accessions for all traits. A total of 46 quantitative trait loci (QTL) were identified for all traits across all chromosomes. One novel major candidate QTL (−lg P ≥ 4) with pleiotropic effects for grain CIE L* (brightness) and CIE a* (redness) was identified on the long arm of chromosome 2A. Eighteen nominal QTL (−lg P ≥ 3) and 26 suggestive QTL (−lg P ≥ 2.5) were identified. Pleiotropic QTL influencing both grain shape and color were identified

    Genome-wide association analysis unveils novel QTLs for seminal root system architecture traits in Ethiopian durum wheat

    Get PDF
    Background: Genetic improvement of root system architecture is essential to improve water and nutrient use efficiency of crops or to boost their productivity under stress or non-optimal soil conditions. One hundred ninety-two Ethiopian durum wheat accessions comprising 167 historical landraces and 25 modern cultivars were assembled for GWAS analysis to identify QTLs for root system architecture (RSA) traits and genotyped with a high-density 90 K wheat SNP array by Illumina. Results: Using a non-roll, paper-based root phenotyping platform, a total of 2880 seedlings and 14,947 seminal roots were measured at the three-leaf stage to collect data for total root length (TRL), total root number (TRN), root growth angle (RGA), average root length (ARL), bulk root dry weight (RDW), individual root dry weight (IRW), bulk shoot dry weight (SDW), presence of six seminal roots per seedling (RT6) and root shoot ratio (RSR). Analysis of variance revealed highly significant differences between accessions for all RSA traits. Four major (− log10P ≥ 4) and 34 nominal (− log10P ≥ 3) QTLs were identified and grouped in 16 RSA QTL clusters across chromosomes. A higher number of significant RSA QTL were identified on chromosome 4B particularly for root vigor traits (root length, number and/or weight). Conclusions: After projecting the identified QTLs on to a high-density tetraploid consensus map along with previously reported RSA QTL in both durum and bread wheat, fourteen nominal QTLs were found to be novel and could potentially be used to tailor RSA in elite lines. The major RGA QTLs on chromosome 6AL detected in the current study and reported in previous studies is a good candidate for cloning the causative underlining sequence and identifying the beneficial haplotypes able to positively affect yield under water- or nutrient-limited conditions

    Evaluation of implementation and effectiveness of digital adherence technology with differentiated care to support tuberculosis treatment adherence and improve treatment outcomes in Ethiopia: a study protocol for a cluster randomised trial.

    Get PDF
    BACKGROUND: Digital adherence technologies (DATs) are recommended to support patient-centred, differentiated care to improve tuberculosis (TB) treatment outcomes, but evidence that such technologies improve adherence is limited. We aim to implement and evaluate the effectiveness of smart pillboxes and medication labels linked to an adherence data platform, to create a differentiated care response to patient adherence and improve TB care among adult pulmonary TB participants. Our study is part of the Adherence Support Coalition to End TB (ASCENT) project in Ethiopia. METHODS/DESIGN: We will conduct a pragmatic three-arm cluster-randomised trial with 78 health facilities in two regions in Ethiopia. Facilities are randomised (1:1:1) to either of the two intervention arms or standard of care. Adults aged ≥ 18 years with drug-sensitive (DS) pulmonary TB are enrolled over 12 months and followed-up for 12 months after treatment initiation. Participants in facilities randomised to either of the two intervention arms are offered a DAT linked to the web-based ASCENT adherence platform for daily adherence monitoring and differentiated response to patient adherence for those who have missed doses. Participants at standard of care facilities receive routine care. For those that had bacteriologically confirmed TB at treatment initiation and can produce sputum without induction, sputum culture will be performed approximately 6 months after the end of treatment to measure disease recurrence. The primary endpoint is a composite unfavourable outcome measured over 12 months from TB treatment initiation defined as either poor end of treatment outcome (lost to follow-up, death, or treatment failure) or treatment recurrence measured 6 months after the scheduled end of treatment. This study will also evaluate the effectiveness, feasibility, and cost-effectiveness of DAT systems for DS-TB patients. DISCUSSION: This trial will evaluate the impact and contextual factors of medication label and smart pillbox with a differentiated response to patient care, among adult pulmonary DS-TB participants in Ethiopia. If successful, this evaluation will generate valuable evidence via a shared evaluation framework for optimal use and scale-up. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR202008776694999, https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=12241 , registered on August 11, 2020
    • …
    corecore