66 research outputs found

    Filtration of atmospheric noise in narrow-field astrometry with very large telescopes

    Full text link
    This paper presents a non-classic approach to narrow field astrometry that offers a significant improvement over conventional techniques due to enhanced reduction of atmospheric image motion. The method is based on two key elements: apodization of the entrance pupil and the enhanced virtual symmetry of reference stars. Symmetrization is implemented by setting special weights to each reference star. Thus a reference field itself forms a virtual net filter that effectively attenuates the image motion spectrum. Atmospheric positional error was found to follow a power dependency ~ R^{K \mu /2} D^{-K/2+1/3} on angular field size R and aperture D; here K is some optional even integer 2<=K<=sqrt{8N+1}-1 limited by a number N of reference stars, and \mu <= 1 is a term dependent on K and the magnitude and sky star distribution in the field. As compared to conventional techniques for which K=2, the improvement in accuracy increases by some orders. Limitations to astrometric performance of monopupil large ground-based telescopes are estimated. The total atmospheric and photon noise for at a 10 m telescope at good 0.4" seeing was found to be, depending on sky star density, 10 to 60 microarcsec per 10 min exposure in R band. For a 100 m telescope and FWHM=0.1" (low-order adaptive optics corrections) the potential accuracy is 0.2 to 2 microarcsec.Comment: 18 pages, 17 figure

    Особенности влияния условий роста на структурные и оптические свойства пленок Zn0.9Cd0.1O

    Get PDF
    The influence of the magnetron power and the gas ratio Ar/O2 on the microstructure and the optical properties of Zn0.9Cd0.1O films is studied. The films were deposited with the use of the dc magnetron sputtering technique at a temperature of 250 ◦C. Atomic force microscopy (AFM) and X-ray diffraction (XRD) researches of a surface morphology demonstrated a strong influence of deposition procedure parameters on the film microstructure. The XRD analysis revealed that all grown films were polycrystalline and single-phase. The increase of the gas ratio Ar/O2 was found to be beneficial for the crystalline structure of Zn0.9Cd0.1O ternary alloys. Peculiarities of the control over the band gap and the surface morphology for Zn0.9Cd0.1O ternary alloys by varying the growth parameters are discussed.Дослiджено вплив потужностi магнетрона i спiввiдношення тискiв робочих газiв Ar/O2 на мiкроструктуру та оптичнi властивостi плiвок Zn0.9Cd0.1O. Плiвки осаджено методом магнетронного розпилювання на постiйному струмi при температурi пiдкладки 250 C. Дослiдження морфологiї поверхнi, здійснені за допомогою атомно-силової мiкроскопiї (АСМ), i рентгено-фазовий аналiз (РФА) виявили сильний вплив технологічних параметрiв осадження на мiкроструктуру плiвок. РФА аналiз показав, що всi вирощенi плiвки є полiкристалiчними i однофазними. Встановлено, що зростання парцiального тиску аргону в газовiй сумiшi Ar/O2 сприятливо впливає на кристалічну структуру твердих розчинiв Zn0.9Cd0.1O. Обговорено особливостi контролю ширини забороненої зони та морфологiї поверхнi твердих розчинiв Zn0.9Cd0.1O шляхом змiни параметрiв вирощування.В работе исследовано влияние мощности магнетрона и соотношения давлений рабочих газов Ar/O2 на микроструктуру и оптические свойства пленок Zn0.9Cd0.1O. Пленки осаждены методом магнетронного распыления на постоянном токе при температуре подложки 250 C. Исследования морфологии поверхности, проведенные с помощью атомно-силовой микроскопии (АСМ), и рентгенофазовый анализ (РФА) выявили сильное влияние технологических параметров роста на микроструктуру пленок. РФА анализ показал, что все выращенные пленки являются поликристаллическими и однофазными. Было установлено, что рост парциального давления аргона в газовой смеси Ar/O2 благоприятно влияет на кристаллическую структуру твердых растворов Zn0;9Cd0;1O. Обсуждены особенности контроля ширины запрещенной зоны и морфологи поверхности твердых растворов Zn0;9Cd0;1O путем изменения параметров осаждени

    Ground-Based CCD Astrometry with Wide Field Imagers. I. [Observations just a few years apart allow decontamination of field objects from members in two Globular clusters.]

    Get PDF
    This paper is the first of a series of papers in which we will apply the methods we have developed for high-precision astrometry (and photometry) with the Hubble Space Telescope to the case of wide-field ground-based images. In particular, we adapt the software originally developed for WFPC2 to ground-based, wide field images from the WFI at the ESO 2.2m telescope. In this paper, we describe in details the new software, we characterize the WFI geometric distortion, discuss the adopted local transformation approach for proper-motion measurements, and apply the new technique to two-epoch archive data of the two closest Galactic globular clusters: NGC 6121 (M4) and NGC 6397. The results of this exercise are more than encouraging. We find that we can achieve a precision of ~7 mas (in each coordinate) in a single exposure for a well-exposed star, which allows a very good cluster-field separation in both M4, and NGC 6397, with a temporal baseline of only 2.8, and 3.1 years, respectively.Comment: 1 pages, 17 figures, 1 table. Accepted for publication in A&A, on April 15 2006. For high resolution version: http://www.eso.org/~lbedin/WFI_method/ms.ps.g

    Optical and structural studies of phase transformations and composition fluctuations at annealing of Zn₁₋xCdxO films grown by dc magnetron sputtering

    No full text
    Ternary Zn₁₋xCdxO (x < 0.12) alloy crystalline films with highly preferred orientation (002) have been successfully deposited on sapphire c-Al₂O₃ substrates using the direct current (dc) reactive magnetron sputtering technique and annealed at temperature 600 °C in air. The structural and optical properties of Zn₁₋xCdxO thin films were systematically studied using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), micro-Raman and photoluminescent (PL) spectroscopy. XPS measurements clearly confirmed Cd incorporation into ZnO lattice. XRD data revealed that the growth of wurtzite Zn₁₋xCdxO films occurs preferentially in the (002) direction. Also, when the Cd content is increased, the XRD peaks shift towards smaller angles and the full width at half-maximum of the lines increases. When the Cd content increases, LO A1 ( Zn₁₋CdxO )-like Raman modes show composition dependent frequency decrease and asymmetrical broadening. The near band-edge PL emission at room temperature shifts gradually to lower energies as the Cd content increases and reaches 2.68 eV for the highest Cd content (x = 0.12). The analysis of NBE band emission and Raman LO A1 ( Zn₁₋xCdxO ) mode shows that at a higher Cd content the coexistence of Zn₁₋xCdxO areas with different concentrations of Cd inside the same film occurs. The presence of CdO in annealed Zn₁₋xCdxO films with the higher Cd content was confirmed by Raman spectra of cubic CdO nanoinclusions. The XRD data also revealed phase segregation of cubic CdO in annealed Zn₁₋xCdxO films (Tann = 600 °C) for x ≥ 0.013

    Po in the Black Sea hydrobionts

    No full text
    The 210Po concentrations in the Black Sea hydrobionts are reported and compared with published radioecological data on this natural radionuclide. The distribution of 210Po in investigated species of the Black Sea pelagic community is the following: mesozooplankton = ctenophore < pelagic fish. 210Po concentrations in the Black Sea fishes depend on their belonging to different ecological groups and decrease from pelagic species to demersal and benthic ones. 210Po concentrations in the Black Sea mussels Mytilus galloprovincialis are as high as such determined in the Black Sea pelagic fishes. 210Po concentrations in algae were the lowest among benthic hydrobionts

    Spectral classification of O–M stars on the basis of

    No full text
    
A new technique allowing the Q-method to be used surely for both the spectral classification of young O–A0 stars and older spectral subclasses A1–M5 is described. Characteristics of interstellar light absorption dependence on distance in the given direction of the sky is used as a main criterion for excluding possible multiplicity of star spectral estimates at some constant values of QUBV. Information on open cluster membership probabilities is also useful as additional criterion of the spectral classification. The method was tested on stars up to V=14V=14 mag in directions of young open clusters NGC 2244 and NGC 2264. The spectral study based on UBV photometry was extended to faint stars of NGC 2264 in the V magnitude range 17-22 mag.


    Po accumulation by components of the Black Sea ecosystem

    No full text
    The naturally occurring radionuclide 210Po was determined in different components of the Black Sea ecosystem. The specific activity of 210Po in water in the open part of the sea was about 1Bq ⋅ m-3. The range of 210Po specific activity in bottom sediments was 4.5–500 Bq ⋅ kg-1 dry weight depending on their type, area and depth of collection. The highest values were found in the NW part of the Black Sea. Sediment distribution coefficients (Kd) of 210Po for bottom sediments, calculated on a dry weight basis, varied from 0.5 × 104 to 5 × 105. The levels of 210Po specific activity in molluscs and pelagic fishes anchovy and sprat were the highest among the investigated species of the Black Sea biota. Concentration factors (CF) of 210Po, estimated on a wet weight basis, reached 1.5 × 103 for macrophytes, 4 × 103 for total zooplankton, 103–104 for the entire fishes depending on their ecological groups affiliation and (0.7–6.0) × 104 for molluscs. So, the ability of the Black Sea biota to accumulate the natural radionuclide 210Po is comparable with that of similar species from others marine and oceanic areas
    corecore