1,581 research outputs found

    Linear Estimating Equations for Exponential Families with Application to Gaussian Linear Concentration Models

    Full text link
    In many families of distributions, maximum likelihood estimation is intractable because the normalization constant for the density which enters into the likelihood function is not easily available. The score matching estimator of Hyv\"arinen (2005) provides an alternative where this normalization constant is not required. The corresponding estimating equations become linear for an exponential family. The score matching estimator is shown to be consistent and asymptotically normally distributed for such models, although not necessarily efficient. Gaussian linear concentration models are examples of such families. For linear concentration models that are also linear in the covariance we show that the score matching estimator is identical to the maximum likelihood estimator, hence in such cases it is also efficient. Gaussian graphical models and graphical models with symmetries form particularly interesting subclasses of linear concentration models and we investigate the potential use of the score matching estimator for this case

    Fingerprint Analysis with Marked Point Processes

    Get PDF
    We present a framework for fingerprint matching based on marked point process models. An efficient Monte Carlo algorithm is developed to calculate the marginal likelihood ratio for the hypothesis that two observed prints originate from the same finger against the hypothesis that they originate from different fingers. Our model achieves good performance on an NIST-FBI fingerprint database of 258 matched fingerprint pairs

    Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments

    Full text link
    With continued advances in Geographic Information Systems and related computational technologies, statisticians are often required to analyze very large spatial datasets. This has generated substantial interest over the last decade, already too vast to be summarized here, in scalable methodologies for analyzing large spatial datasets. Scalable spatial process models have been found especially attractive due to their richness and flexibility and, particularly so in the Bayesian paradigm, due to their presence in hierarchical model settings. However, the vast majority of research articles present in this domain have been geared toward innovative theory or more complex model development. Very limited attention has been accorded to approaches for easily implementable scalable hierarchical models for the practicing scientist or spatial analyst. This article is submitted to the Practice section of the journal with the aim of developing massively scalable Bayesian approaches that can rapidly deliver Bayesian inference on spatial process that are practically indistinguishable from inference obtained using more expensive alternatives. A key emphasis is on implementation within very standard (modest) computing environments (e.g., a standard desktop or laptop) using easily available statistical software packages without requiring message-parsing interfaces or parallel programming paradigms. Key insights are offered regarding assumptions and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table

    An Activating Mutation in sos-1 Identifies Its Dbl Domain as a Critical Inhibitor of the Epidermal Growth Factor Receptor Pathway during Caenorhabditis elegans Vulval Development

    Get PDF
    Proper regulation of receptor tyrosine kinase (RTK)-Ras-mitogen-activated protein kinase (MAPK) signaling pathways is critical for normal development and the prevention of cancer. SOS is a dual-function guanine nucleotide exchange factor (GEF) that catalyzes exchange on Ras and Rac. Although the physiologic role of SOS and its CDC25 domain in RTK-mediated Ras activation is well established, the in vivo function of its Dbl Rac GEF domain is less clear. We have identified a novel gain-of-function missense mutation in the Dbl domain of Caenorhabditis elegans SOS-1 that promotes epidermal growth factor receptor (EGFR) signaling in vivo. Our data indicate that a major developmental function of the Dbl domain is to inhibit EGF-dependent MAPK activation. The amount of inhibition conferred by the Dbl domain is equal to that of established trans-acting inhibitors of the EGFR pathway, including c-Cbl and RasGAP, and more than that of MAPK phosphatase. In conjunction with molecular modeling, our data suggest that the C. elegans mutation, as well as an equivalent mutation in human SOS1, activates the MAPK pathway by disrupting an autoinhibitory function of the Dbl domain on Ras activation. Our work suggests that functionally similar point mutations in humans could directly contribute to disease

    Fingerprint analysis with marked point processes

    Get PDF

    The Ins and Outs of Fluoride in Human Nutrition

    Get PDF

    Whole Kernel and Bulgur Wheat Preparation and Usage

    Get PDF

    Restoration of Isospin Symmetry in Highly Excited Nuclei

    Get PDF
    Explicit relations between the isospin mixing probability, the spreading width ΓIAS↓\Gamma_{IAS}^{\downarrow} of the Isobaric Analog State (IAS) and the statistical decay width Γc\Gamma_c of the compound nucleus at finite excitation energy, are derived by using the Feshbach projection formalism. The temperature dependence of the isospin mixing probability is discussed quantitatively for the first time by using the values of ΓIAS↓\Gamma_{IAS}^{\downarrow} and of Γc\Gamma_c calculated by means of microscopic models. It is shown that the mixing probability remains essentially constant up to a temperature of the order of 1 MeV and then decreases to about 1/4 of its zero temperature value, at higher temperature than ≈\approx 3 MeV, due to the short decay time of the compound system.Comment: 13 pages, 1 figure (PostScript file included). To appear in Phys. Lett.

    Challenges for Efficient Query Evaluation on Structured Probabilistic Data

    Full text link
    Query answering over probabilistic data is an important task but is generally intractable. However, a new approach for this problem has recently been proposed, based on structural decompositions of input databases, following, e.g., tree decompositions. This paper presents a vision for a database management system for probabilistic data built following this structural approach. We review our existing and ongoing work on this topic and highlight many theoretical and practical challenges that remain to be addressed.Comment: 9 pages, 1 figure, 23 references. Accepted for publication at SUM 201
    • …
    corecore