144 research outputs found

    Continuous global optimization for protein structure analysis

    Get PDF
    Optimization methods are a powerful tool in protein structure analysis. In this paper we show that they can be profitably used to solve relevant problems in drug design such as the comparison and recognition of protein binding sites and the protein-peptide docking. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site whereas the search for correct protein-peptide docking is often based on the minimization of an interaction energy model. We show that continuous global optimization methods can be used to solve the above problems and show some computational results

    Digitalizing Clinical Guidelines: Experiences in the Development of Clinical Decision Support Algorithms for Management of Childhood Illness in Resource-Constrained Settings.

    Get PDF
    Clinical decision support systems (CDSSs) can strengthen the quality of integrated management of childhood illness (IMCI) in resource-constrained settings. Several IMCI-related CDSSs have been developed and implemented in recent years. Yet, despite having a shared starting point, the IMCI-related CDSSs are markedly varied due to the need for interpretation when translating narrative guidelines into decision logic combined with considerations of context and design choices. Between October 2019 and April 2021, we conducted a comparative analysis of 4 IMCI-related CDSSs. The extent of adaptations to IMCI varied, but common themes emerged. Scope was extended to cover a broader range of conditions. Content was added or modified to enhance precision, align with new evidence, and support rational resource use. Structure was modified to increase efficiency, improve usability, and prioritize care for severely ill children. The multistakeholder development processes involved syntheses of recommendations from existing guidelines and literature; creation and validation of clinical algorithms; and iterative development, implementation, and evaluation. The common themes surrounding adaptations of IMCI guidance highlight the complexities of digitalizing evidence-based recommendations and reinforce the rationale for leveraging standards for CDSS development, such as the World Health Organization's SMART Guidelines. Implementation through multistakeholder dialogue is critical to ensure CDSSs can effectively and equitably improve quality of care for children in resource-constrained settings

    Threshold-Free Population Analysis Identifies Larger DRG Neurons to Respond Stronger to NGF Stimulation

    Get PDF
    Sensory neurons in dorsal root ganglia (DRG) are highly heterogeneous in terms of cell size, protein expression, and signaling activity. To analyze their heterogeneity, threshold-based methods are commonly used, which often yield highly variable results due to the subjectivity of the individual investigator. In this work, we introduce a threshold-free analysis approach for sparse and highly heterogeneous datasets obtained from cultures of sensory neurons. This approach is based on population estimates and completely free of investigator-set parameters. With a quantitative automated microscope we measured the signaling state of single DRG neurons by immunofluorescently labeling phosphorylated, i.e., activated Erk1/2. The population density of sensory neurons with and without pain-sensitizing nerve growth factor (NGF) treatment was estimated using a kernel density estimator (KDE). By subtraction of both densities and integration of the positive part, a robust estimate for the size of the responsive subpopulations was obtained. To assure sufficiently large datasets, we determined the number of cells required for reliable estimates using a bootstrapping approach. The proposed methods were employed to analyze response kinetics and response amplitude of DRG neurons after NGF stimulation. We thereby determined the portion of NGF responsive cells on a true population basis. The analysis of the dose dependent NGF response unraveled a biphasic behavior, while the study of its time dependence showed a rapid response, which approached a steady state after less than five minutes. Analyzing two parameter correlations, we found that not only the number of responsive small-sized neurons exceeds the number of responsive large-sized neurons—which is commonly reported and could be explained by the excess of small-sized cells—but also the probability that small-sized cells respond to NGF is higher. In contrast, medium-sized and large-sized neurons showed a larger response amplitude in their mean Erk1/2 activity

    Alcune Riflessioni Sulla Meccanica di Galileo-Newton Seguite da Un’introduzione Alla Relatività

    No full text

    Lezioni di Campi elettromagnetici

    No full text

    Global Optimization of Protein–peptide Docking by a Filling Function Method

    No full text
    Molecular docking programs play a crucial role in drug design and development. In recent years, much attention has been devoted to the protein–peptide docking problem in which docking of a flexible peptide with a given protein is sought. In this work, we present a docking algorithm which is based on the use of a filling function method for continuous global optimization. In particular, the protein–peptide docking position is found by minimizing the conformational potential free energy function based on a new approximate mathematical model. The resulting global optimization problem presents some difficulties, since it is a large-scale one and the objective function is non-convex, so that it has many local minima. To solve the problem, we adopt a global optimization method based on the use of a filling function to escape from local solutions. Moreover, in order to obtain more accurate results, we search the correct docking position by performing a two-phase optimization process. In particular, in a first step, only the carbon Cα atoms of the protein and peptide are considered, thus obtaining an approximate docking solution. Then, the energy function is completed by considering all the peptide and protein atoms so that, starting from the solution of the first phase, the new minimization process gives a more accurate result. We present numerical results on a set of benchmark docking pairs and their comparison with those obtained by the known software package PacthDock for molecular docking

    A filling function method for unconstrained global optimization

    No full text
    We consider the problem of finding a global minimum point of a given continuously differentiable function. The strategy is adopted of a sequential nonmonotone improvement of local optima. In particular, to escape the basin of attraction of a local minimum, a suitable Gaussian-based filling function is constructed using the quadratic model (possibly approximated) of the objective function, and added to the objective to fill the basin. Then, a procedure is defined where some new minima are determined, and that of them with the lowest function value is selected as the subsequent restarting point, even if its basin is higher than the starting one. Moreover, a suitable device employing repeatedly the centroid of all the minima determined, is introduced in order to improve the efficiency of the method in the solution of difficult problems where the number of local minima is very high. The algorithm is applied to a set of test functions from the literature and the numerical results are reported along with those obtained by applying a standard Monotonic Basin Hopping method for comparison
    • 

    corecore