1,818 research outputs found

    Redshifts in the Southern Abell Redshift Survey Clusters. I. The Data

    Full text link
    The Southern Abell Redshift Survey contains 39 clusters of galaxies with redshifts in the range 0.0 < z < 0.31 and a median redshift depth of z = 0.0845. SARS covers the region 0 21h (while avoiding the LMC and SMC) with b > 40. Cluster locations were chosen from the Abell and Abell-Corwin-Olowin catalogs while galaxy positions were selected from the Automatic Plate Measuring Facility galaxy catalog with extinction-corrected magnitudes in the range 15 <= b_j < 19. SARS utilized the Las Campanas 2.5 m duPont telescope, observing either 65 or 128 objects concurrently over a 1.5 sq deg field. New redshifts for 3440 galaxies are reported in the fields of these 39 clusters of galaxies.Comment: 20 pages, 5 figures, accepted for publication in the Astronomical Journal, Table 2 can be downloaded in its entirety from http://trotsky.arc.nasa.gov/~mway/SARS1/sars1-table2.cs

    Star Formation, Metallicity and Dust Properties Derived from the SAPM Galaxy Survey Spectra

    Full text link
    We have derived star formation rates (SFRs), gas-phase oxygen abundances and effective dust absorption optical depths for a sample of galaxies drawn from the Stromlo-APM redshift survey using the new Charlot and Longhetti (2001; CL01) models, which provide a physically consistent description of the effects of stars, gas and dust on the integrated spectra of galaxies. Our sample consists of 705 galaxies with measurements of the fluxes and equivalent widths of Halpha, [OII], and one or both of [NII] and [SII]. For a subset of the galaxies, 60 and 100 micron IRAS fluxes are available. We compare the star formation rates derived using the models with those derived using standard estimators based on the Halpha, the [OII] and the far-infrared luminosities of the galaxies. The CL01 SFR estimates agree well with those derived from the IRAS fluxes, but are typically a factor of ~3 higher than those derived from the Halpha or the [OII] fluxes, even after the usual mean attenuation correction of A_Halpha=1 mag is applied to the data. We show that the reason for this discrepancy is that the standard Halpha estimator neglects the absorption of ionizing photons by dust in HII regions and the contamination of Halpha emission by stellar absorption. We also use our sample to study variations in star formation and metallicity as a function of galaxy absolute bJ magnitude. For this sample, the star formation rate per unit bJ luminosity is independent of magnitude. The gas-phase oxygen abundance does increase with bJ luminosity, although the scatter in metallicity at fixed magnitude is large.Comment: 17 pages, 8 figures, accepted for publication in MNRA

    Intrinsic Axis Ratio Distribution of Early-type Galaxies From Sloan Digital Sky Survey

    Full text link
    Using Sloan Digital Sky Survey Data Release 5, we have investigated the intrinsic axis ratio distribution (ARD) for early-type galaxies. We have constructed a volume-limited sample of 3,922 visually-inspected early-type galaxies at 0.05≀z≀0.060.05 \leq z \leq 0.06 carefully considering sampling biases caused by the galaxy isophotal size and luminosity. We attempt to de-project the observed ARD into three-dimensional types (oblate, prolate, and triaxial), which are classified in terms of triaxiality. We confirm that no linear combination of randomlyrandomly-distributed axis ratios of the three types can reproduce the observed ARD. However, using Gaussian intrinsic distributions, we have found reasonable fits to the data with preferred mean axis ratios for oblate, prolate, and triaxial (triaxials in two axis ratios), ÎŒo=0.44,ÎŒp=0.72,ÎŒt,ÎČ=0.92,ÎŒt,Îł=0.78\mu_o=0.44, \mu_p=0.72, \mu_{t,\beta}=0.92, \mu_{t,\gamma}=0.78 where the fractions of oblate, prolate and triaxial types are \textrm{O:P:T}=0.29^{\pm0.09}:0.26^{\pm0.11}:0.45^{\pm0.13}.Wehavealsofoundthattheluminoussample(. We have also found that the luminous sample (-23.3 < M_r \leq -21.2)tendstohavemoretriaxialsthanthelessluminous() tends to have more triaxials than the less luminous (-21.2 < M_r <-19.3$) sample does. Oblate is relatively more abundant among the less luminous galaxies. Interestingly, the preferences of axis ratios for triaxial types in the two luminosity classes are remarkably similar. We have not found any significant influence of the local galaxy number density on ARD. We show that the results can be seriously affected by the details in the data selection and type classification scheme. Caveats and implications on galaxy formation are discussed.Comment: 9 pages, 11 figures, Accepted for publication in Ap

    NGC1600 - Cluster or Field Elliptical?

    Full text link
    A study of the galaxy distribution in the field of the elliptical galaxy NGC1600 has been undertaken. Although this galaxy is often classified as a member of a loose group, all the neighbouring galaxies are much fainter and could be taken as satellites of NGC1600. The number density profile of galaxies in the field of this galaxy shows a decline with radius, with evidence of a background at approximately 1.3 Mpc. The density and number density profile are consistent with that found for other isolated early-type galaxies. NGC1600 appears as an extended source in X-rays, and the center of the X-ray emission seems not to coincide with the center of the galaxy. The velocity distribution of neighbouring galaxies has been measured from optical spectroscopic observations and shows that the mean radial velocity is approximately 85 km/s less than that of NGC1600, indicating that the centre of mass could lie outside the galaxy. The velocity dispersion of the `group' is estimated at 429 km/s. The inferred mass of the system is therefore of the order of 10^14 solar masses, a value that corresponds to a large group. NGC1600 therefore shares some similarities, but is not identical to, the `fossil clusters' detected in X-ray surveys. Implications of this result for studies of isolated early-type galaxies are briefly discussed.Comment: 8 pages, 5 figures and 2 table, accepted for publication in the Ap

    Neutrino-Lasing in The Early Universe

    Full text link
    Recently, Madsen has argued that relativistic decays of massive neutrinos into lighter fermions and bosons may lead, via thermalization, to the formation of a Bose condensate. If correct, this could generate mixed hot and cold dark matter, with important consequences for structure formation. From a detailed study of such decays, we arrive at substantially different conclusions; for a wide range of masses and decay times, we find that stimulated emission of bosons dominates the decay. This phenomenon can best be described as a neutrino laser, pumped by the QCD phase transition. We discuss the implications for structure formation and the dark-matter problem.Comment: 7 pages, 3 figures included as uuencoded file, CITA/93/

    An Observational Limit on the Dwarf Galaxy Population of the Local Group

    Get PDF
    We present the results of an all-sky, deep optical survey for faint Local Group dwarf galaxies. Candidate objects were selected from the second Palomar survey (POSS-II) and ESO/SRC survey plates and follow-up observations performed to determine whether they were indeed overlooked members of the Local Group. Only two galaxies (Antlia and Cetus) were discovered this way out of 206 candidates. Based on internal and external comparisons, we estimate that our visual survey is more than 77% complete for objects larger than one arc minute in size and with a surface brightness greater than an extremely faint limit over the 72% of the sky not obstructed by the Milky Way. Our limit of sensitivity cannot be calculated exactly, but is certainly fainter than 25 magnitudes per square arc second in R, probably 25.5 and possibly approaching 26. We conclude that there are at most one or two Local Group dwarf galaxies fitting our observational criteria still undiscovered in the clear part of the sky, and a roughly a dozen hidden behind the Milky Way. Our work places the "missing satellite problem" on a firm quantitative observational basis. We present detailed data on all our candidates, including surface brightness measurements.Comment: 58 pages in AJ manuscript format; some figures at slightly reduced quality; accepted by the Astronomical Journa

    Impediments to mixing classical and quantum dynamics

    Full text link
    The dynamics of systems composed of a classical sector plus a quantum sector is studied. We show that, even in the simplest cases, (i) the existence of a consistent canonical description for such mixed systems is incompatible with very basic requirements related to the time evolution of the two sectors when they are decoupled. (ii) The classical sector cannot inherit quantum fluctuations from the quantum sector. And, (iii) a coupling among the two sectors is incompatible with the requirement of physical positivity of the theory, i.e., there would be positive observables with a non positive expectation value.Comment: RevTex, 21 pages. Title slightly modified and summary section adde

    Unavoidable Selection Effects in the Analysis of Faint Galaxies in the Hubble Deep Field: Probing the Cosmology and Merger History of Galaxies

    Get PDF
    (Abridged) We present a detailed analysis of the number count and photometric redshift distribution of faint galaxies in the Hubble Deep Field (HDF), paying a special attention to the selection effects including the cosmological dimming of surface brightness of galaxies. We find a considerably different result from previous studies ignoring the selection effects, and these effects should therefore be taken into account in the analysis. We find that the model of pure luminosity evolution (PLE) of galaxies in the Einstein-de Sitter (EdS) universe predicts much smaller counts than those observed at faint magnitude limits by a factor of more than 10, so that a very strong number evolution of galaxies with \eta > 3-4 must be invoked to reproduce the I_{814} counts, when parametrized as \phi^* \propto (1+z)^\eta. However we show that such a strong number evolution under realistic merging processes of galaxies can not explain the steep slope of the B_{450} and V_{606} counts, and it is seriously inconsistent with their photometric redshift distribution. We find that these difficulties still persist in an open universe with \Omega_0 > 0.2, but are resolved only when we invoke a Λ\Lambda-dominated flat universe, after examining various systematic uncertainties in modeling the formation and evolution of galaxies. The present analysis revitalizes the practice of using faint number counts as an important cosmological test, giving one of the arguments against the EdS universe and suggests acceleration of the cosmic expansion by vacuum energy density. While a modest number evolution of galaxies with \eta ~ 1 is still necessary even in a Lambda-dominated universe, a stronger number evolution with \eta > 1 is rejected from the HDF data, giving a strong constraint on the merger history of galaxies.Comment: 24 pages, 15 figures, final version matching publication in ApJ. Some references added. The complete ps file of Table 3 is available at http://th.nao.ac.jp/~totani/images/paper/ty2000-table3.p

    A Quantitative Evaluation of the Galaxy Component of COSMOS and APM Catalogs

    Get PDF
    We have carried out an independent quantitative evaluation of the galaxy component of the "COSMOS/UKST Southern Sky Object Catalogue" (SSC) and the "APM/UKST J Catalogue" (APM). Using CCD observations our results corroborate the accuracy of the photometry of both catalogs, which have an overall dispersion of about 0.2 mag in the range 17 <= b_J <= 21.5. The SSC presents externally calibrated galaxy magnitudes that follow a linear relation, while the APM instrumental magnitudes of galaxies, only internally calibrated by the use of stellar profiles, require second-order corrections. The completeness of both catalogs in a general field falls rapidly fainter than b_J = 20.0, being slightly better for APM. The 90% completeness level of the SSC is reached between b_J = 19.5 and 20.0, while for APM this happens between b_J = 20.5 and 21.0. Both SSC and APM are found to be less complete in a galaxy cluster field. Galaxies misclassified as stars in the SSC receive an incorrect magnitude because the stellar ones take saturation into account besides using a different calibration curve. In both cases, the misclassified galaxies show a large diversity of colors that range from typical colors of early-types to those of blue star-forming galaxies. A possible explanation for this effect is that it results from the combination of low sampling resolutions with properties of the image classifier for objects with characteristic sizes close to the instrumental resolution. We find that the overall contamination by stars misclassified as galaxies is < 5% to b_J = 20.5, as originally estimated for both catalogs. Although our results come from small areas of the sky, they are extracted from two different plates and are based on the comparison with two independent datasets.Comment: 14 pages of text and tables, 8 figures; to be published in the Astronomical Journal; for a single postscript version file see ftp://danw.on.br/outgoing/caretta/caretta.p
    • 

    corecore