35,070 research outputs found
A summary of the published data on host plants and morphology of immature stages of Australian jewel beetles (Coleoptera: Buprestidae) : with additional new records
A summary is given of the published host plant and descriptive immature stage morphology data for 671 species and 11 subspecies in 54 genera of Australian jewel beetles (Coleoptera: Buprestidae). New host data for 155 species and 3 subspecies in 17 genera including the first published data for 75 species are included
On Spectral and Temporal Variability in Blazars and Gamma Ray Bursts
A simple model for variability in relativistic plasma outflows is studied, in
which nonthermal electrons are continuously and uniformly injected in the
comoving frame over a time interval dt. The evolution of the electron
distribution is assumed to be dominated by synchrotron losses, and the energy-
and time-dependence of the synchrotron and synchrotron self-Compton (SSC)
fluxes are calculated for a power-law electron injection function with index s
= 2. The mean time of a flare or pulse measured at photon energy E with respect
to the onset of the injection event varies as E^{-1/2} and E^{-1/4} for
synchrotron and SSC processes, respectively, until the time approaches the
limiting intrinsic mean time (1+z)dt/(2 D), where z is the redshift and D is
the Doppler factor. This dependence is in accord with recent analyses of blazar
and GRB emissions, and suggests a method to discriminate between external
Compton and SSC models of high-energy gamma radiation from blazars and GRBs.
The qualititative behavior of the X-ray spectral index/flux relation observed
from BL Lac objects can be explained with this model. This demonstrates that
synchrotron losses are primarily responsible for the X-ray variability behavior
and strengthens a new test for beaming from correlated hard X-ray/TeV
observations.Comment: 10 pages, 2 figures, accepted for publication in Astrophysical
Journal Letters; uses aaspp4.sty, epsf.st
Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus
The upper haze (UH) of Venus is variable on the order of days and it is
populated by two particle modes. We use a 1D microphysics and vertical
transport model based on the Community Aerosol and Radiation Model for
Atmospheres to evaluate whether interaction of upwelled cloud particles and
sulfuric acid particles nucleated in situ on meteoric dust are able to generate
the two size modes and whether their observed variability are due to cloud top
vertical transient winds. Nucleation of photochemically produced sulfuric acid
onto polysulfur condensation nuclei generates mode 1 cloud droplets that then
diffuse upwards into the UH. Droplets generated in the UH from nucleation of
sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles
and cannot reproduce the observed bimodal size distribution. The mass transport
enabled by cloud top transient winds are able to generate a bimodal size
distribution in a time scale consistent with observations. Sedimentation and
convection in the middle and lower clouds causes the formation of large mode 2
and mode 3 particles. Evaporation of these particles below the clouds creates a
local sulfuric acid vapor maximum that causes upwelling of sulfuric acid back
into the clouds. If the polysulfur condensation nuclei are small and their
production rate is high, coagulation of small droplets onto larger droplets in
the middle cloud may result in sulfuric acid "rain" below the clouds once every
few Earth months. Reduction of the polysulfur condensation nuclei production
rate destroys this oscillation and reduces the mode 1 particle abundance in the
middle cloud by two orders of magnitude, though it better reproduces the
sulfur-to-sulfuric-acid mass ratio in the cloud and haze droplets. In general
we find satisfactory agreement between our results and observations, though
improvements could be made by incorporating sulfur microphysics.Comment: 62 pages, 18 figures, 1 table. Accepted for publication in Icaru
Pressure distributions from high Reynolds number transonic tests of an NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel
Tests were conducted in the 2-D test section of the Langley 0.3-meter Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th power. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Tabulated pressure distributions and integrated force and moment coefficients are presented as well as plots of the surface pressure distributions. The data are presented uncorrected for wall interference effects and without analysis
On-chip cavity quantum phonodynamics with an acceptor qubit in silicon
We describe a chip-based, solid-state analogue of cavity-QED utilizing
acoustic phonons instead of photons. We show how long-lived and tunable
acceptor impurity states in silicon nanomechanical cavities can play the role
of a matter non-linearity for coherent phonons just as, e.g., the Josephson
qubit plays in circuit-QED. Both strong coupling (number of Rabi oscillations ~
100) and strong dispersive coupling (0.1-2 MHz) regimes can be reached in
cavities in the 1-20 GHz range, enabling the control of single phonons,
phonon-phonon interactions, dispersive phonon readout of the acceptor qubit,
and compatibility with other optomechanical components such as phonon-photon
translators. We predict explicit experimental signatures of the acceptor-cavity
system.Comment: 6 pages, 2 figures, PDFLaTeX. New version improves clarit
Quantum Error Correction on Linear Nearest Neighbor Qubit Arrays
A minimal depth quantum circuit implementing 5-qubit quantum error correction
in a manner optimized for a linear nearest neighbor architecture is described.
The canonical decomposition is used to construct fast and simple gates that
incorporate the necessary swap operations. Simulations of the circuit's
performance when subjected to discrete and continuous errors are presented. The
relationship between the error rate of a physical qubit and that of a logical
qubit is investigated with emphasis on determining the concatenated error
correction threshold.Comment: 4 pages, 5 figure
Rex1p Deficiency Leads to Accumulation of Precursor Initiator tRNA\u3csup\u3eMet\u3c/sup\u3e and Polyadenylation of Substrate RNAs in \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e
A synthetic genetic array was used to identify lethal and slow-growth phenotypes produced when a mutation in TRM6, which encodes a tRNA modification enzyme subunit, was combined with the deletion of any non-essential gene in Saccharomyces cerevisiae. We found that deletion of the REX1 gene resulted in a slow-growth phenotype in the trm6-504 strain. Previously, REX1 was shown to be involved in processing the 3′ ends of 5S rRNA and the dimeric tRNAArg-tRNAAsp. In this study, we have discovered a requirement for Rex1p in processing the 3′ end of tRNAiMet precursors and show that precursor tRNAiMet accumulates in a trm6-504 rex1Δ strain. Loss of Rex1p results in polyadenylation of its substrates, including tRNAiMet, suggesting that defects in 3′ end processing can activate the nuclear surveillance pathway. Finally, purified Rex1p displays Mg2+-dependent ribonuclease activity in vitro, and the enzyme is inactivated by mutation of two highly conserved amino acids
- …