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A quantum circuit implementing 5-qubit quantum-error correction on a linear-nearest-neighbor architecture
is described. The canonical decomposition is used to construct fast and simple gates that incorporate the
necessary swap operations allowing the circuit to achieve the same depth as the current least depth circuit.
Simulations of the circuit’s performance when subjected to discrete and continuous errors are presented. The
relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis
on determining the concatenated error correction threshold.
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The field of quantum computation deals with the manipu-
lation of 2-state quantum systems called qubits. Many differ-
ent physical systems are being investigated in the race to
build a scalable quantum computer[1–6]. Due to the fragility
of quantum systems, one property a scalable architecture
must possess is the ability to implement quantum-error cor-
rection(QEC) [7–9]. The question has been raised as to how
well QEC can be implemented on a linear-nearest-neighbor
(LNN) quantum computer[10] due to the expectation that
numerous swap gates will be required. Working out a way
around this is important due to the large number of LNN
architectures currently under investigation[11–23]. In this
paper a 5-qubit QEC circuit appropriate for a LNN architec-
ture is presented that achieves the same depth as the best
known circuit for an architecture able to interact arbitrary
pairs of qubits[24]. In this paper, the depth of the circuit is
used as a measure of quality of the circuit due to the need to
minimize the overall circuit time so that it is short in com-
parison to the decoherence time of an individual qubit. A
QEC circuit will not function unless this condition is met.

The paper is organized as follows. First, the canonical
decomposition used to construct efficient 2-qubit gates is dis-
cussed in brief. Details of the method used can be found in
Ref. [25]. The Kane architecture[1] has been used to con-
struct explicit decompositions, but the methods described ap-
ply to any architecture. The 5-qubit QEC scheme is then

discussed and the LNN circuit presented. Following this,
simulations of quantum data storage with and without QEC
are presented. The paper concludes with a summary of all
results.

The canonical decomposition enables any 2-qubit opera-
tor UAB to be expressed(nonuniquely) in the form VA

†

^ VB
†UdUA ^ UB whereUA, UB, VA, andVB are single-qubit

unitaries andUd=expfisaxX^ X+ayY^ Y+azZ^ Zdg [25].
Moreover, any entangling interaction can be used to create
an arbitraryUd up to single-qubit rotations[26]. These two
facts allow the construction of very efficient composite gates
on any physical architecture. Figure 1(a) shows the form of
such a decomposed controlled-NOT (CNOT) gate on a Kane
quantum computer[1,27]. The 2-qubit interaction corre-
sponds toax=ay=p /8 andaz=0. Z rotations have been rep-
resented by quarter, half, and three-quarter circles corre-
sponding toRzsp /2d, Rzspd, andRzs3p /2d, respectively. Full
circles representZ rotations of angle dependent on the physi-
cal construction of the computer. Square gates 1 and 2 cor-
respond toX rotationsRxspd andRxsp /2d. Figure 1(b) shows
an implementation of the composite gate Hadamard followed
by CNOT gate which is followed by swap gate(HCNOTS).
Note that the total time of the compound gate is significantly
less than theCNOT gate on its own.

The above implies that the swaps inevitably required in a
LNN architecture to bring qubits together to be interacted

FIG. 1. Decomposition into physical operations of(a) CNOT gate,(b) Hadamard gate,CNOT gate, then swap gate. Note that the Kane
architecture has been used for illustrative purposes. In addition to the clear speed advantage when implementing compound gates, the
decomposedCNOT gate is faster than its adiabatic equivalents26 msd [28].
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FIG. 2. 5-qubit encoding circuit for general architecture and(b) equivalent circuit for linear-nearest-neighbor architecture with dashed
boxes indicating compound gates.CNOT gates that must be performed sequentially are numbered.

FIG. 3. A sequence of physical gates implementing the circuit of Fig. 2(b). Note the Kane architecture has been used for illustrative
purposes.

FIG. 4. Circuit equivalence used to reduce the number of physical gates in Fig. 3.

FIG. 5. A complete encode-wait-decode-measure-correct QEC cycle.
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can be incorporated into other gates without additional cost.
Indeed, in certain cases LNN circuits built out of compound
gates are actually faster.

5-qubit quantum-error correction schemes are designed to
correct a single arbitrary error. No single error correction
scheme can use less than 5 qubits[29]. A number of 5-qubit
QEC proposals exist[8,9,24,30,31]. Figure 2(b) shows a cir-
cuit appropriate for a LNN architecture implementing the
encode stage of the QEC scheme proposed in Ref.[24]. For
reference, the original circuit is shown in Fig. 2(a). Note that
the LNN circuit uses exactly the same number ofCNOT gates
and achieves minimal depth since theCNOT gates numbered
1–6 in Fig. 2(a) must be performed sequentially on any ar-
chitecture that can only interact pairs of qubits(not 3 or more
at once). The two extra “naked” swap gates in Fig. 2(b) do
not significantly add to the total time of the circuit. Figure 3
shows an equivalent circuit broken into physical operations
for a Kane quantum computer. Note that this circuit uses the
fact that if two 2-qubit gates share a qubit then two single-
qubit unitaries can be combined as shown in Fig. 4. The
decode circuit is simply the encode circuit run backwards.
All 5-qubit QEC schemes are only useful for data storage[9]
due to the difficulty of interacting two logical qubits. Figure
5 shows a full encode-wait-decode-measure-correct data
storage cycle. Table I shows the range of possible measure-
ments and the action required in each case.

When simulating the QEC cycle, the circuit of Fig. 2(b)
was used to keep the analysis architecture independent. Each
gate was modeled as taking the same time, allowing the time
T to be made an integer such that each gate takes one time
step. Gates were furthermore simulated as though perfectly
reliable and errors applied to each qubit(including idle qu-
bits) at the end of each time step. The rationale for including
idle qubits is that in a LNN architecture physical manipula-

tion of some description is required to decouple neighboring
qubits, which inevitably leads to errors.

Two error models were used—discrete and continuous. In
the discrete model a qubit can suffer either a bit flip(X),
phase flip(Z), or both simultaneouslysXZd. Each type of
error is equally likely with total probability of errorp per
qubit per time step. The continuous error model involves
applying single-qubit unitary operations of the form

Us = S cossu/2deisa+bd/2 sinsu/2deisa−bd/2

− sinsu/2deis−a+bd/2 cossu/2deis−a−bd/2D , s1d

where a, b, and u are normally distributed about 0 with
standard deviations.

Both the single-qubit and single-logical qubit(5 qubits)
systems were simulated. The initial state

uCl = sinsp/8du0l + cossp/8du1l s2d

was used in both cases asukCuXuClu2=0.5, ukCuZuClu2=0.5,
and ukCuXZuClu2=0 thus allowing each type of error to be
detected sbut not necessarily distinguishedd. Simpler
states such asu0l, u1l, su0l+ u1ld /Î2, and su0l− u1ld /Î2 do
not have this property. For example, the statesu0l and u1l
are insensitive to phase errors, whereas the other two
states are insensitive to bit flip errors.

Let Twait denote the duration of the wait stage. Note that
the total duration of the encode, decode, measure, and correct
stages is 14. In the QEC case the total timeT=Twait+14 of
one QEC cycle was varied to determine the time that mini-
mizes the error per time step

estep= 1 −ÎT1 − e f inal, s3d

wheree f inal=1−ukC8uClu2 and uC8l is the final logical qubit
state. An optimal timeTopt exists since the logical qubit is
only protected during the wait stage and the correction pro-
cess can only cope with one error. If the wait time is zero,
extra complexity has been added but no corrective ability.
Similarly, if the wait time is very large, it is almost certain
that more than one error will occur, resulting in the qubit
being destroyed during the correction process. Somewhere
between these two extremes is a wait time that minimizes
estep. Table II showsTopt, estep, and the reduction in error

TABLE I. Action required to correct the data qubitC8 vs mea-
sured value of ancilla qubits. Note that theX operations simply
reset the ancilla.

Measurement Action

C8 ^ 0000 I^ IIII

C8 ^ 0001 I^ IIIX

C8 ^ 0010 I^ IIXI

C8 ^ 0011 Z^ IIXX

C8 ^ 0100 I^ IXII

C8 ^ 0101 X^ IXIX

C8 ^ 0110 Z^ IXXI

C8 ^ 0111 X^ IXXX

C8 ^ 1000 Z^ XIII

C8 ^ 1001 I^ XIIX

C8 ^ 1010 X^ XIXI

C8 ^ 1011 X^ XIXX

C8 ^ 1100 Z^ XXII

C8 ^ 1101 Z^ XXII

C8 ^ 1110 XZ^ XXXI

C8 ^ 1111 Z^ XXXX

TABLE II. Probability per time stepestep of a discrete error
when using 5-qubit QEC vs physical probabilityp per qubit per
time step of a discrete error.

p Topt estep estep/p

10−2 25 1.7310−2 1.73100

1.6310−3 40 1.6310−3 1.03100

10−3 50 8.4310−4 8.4310−1

10−4 150 3.1310−5 3.1310−1

10−5 750 1.1310−6 1.1310−1

10−6 1500 3.2310−8 3.2310−2

10−7 6000 1.1310−9 1.1310−2

10−8 10000 2.0310−11 2.0310−3
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estep/p versusp for discrete errors. Table III shows the cor-
responding data for continuous errors. Note that, in the con-
tinuous case, the single qubitp has been obtained via 1-qubit
simulations and a 1-qubit version of Eq.s3d.

The range of threshold error ratesp in the literature is
enormous, from a very pessimisticp=10−8 [32] to a very
optimistic p=2310−3 [33]. The thresholdp=1.6310−3

shown in Table II is comparable to the most optimistic pre-
vious estimate which was made using 7-qubit fault tolerant
QEC with errors applied only after gate operations and not to
idle qubits. This threshold should not, however, be thought
of as the allowable operating error rate of a physical quantum
computer as precisely no improvement in error rate is
achieved when using QEC. If an error rate improvement of a
factor of 10 or 100 is desired when using QEC thenp

=10−5 or p=10−7 is required, respectively. Further work is
required to determine the error rate improvement required to
allow robust implementation of large scale quantum algo-
rithms with a reasonable number of error correction qubits.

For continuous errors, there is no true threshold. Even for
very large random unitary rotations an improvement is still
gained by using the LNN QEC circuit. In this case, provided
gates can be implemented such that the angles associated
with the continuous error model are of order 10−2, an im-
provement in error rate of at least a factor of 100 can be
achieved.

Further work is required to determine whether the discrete
or continuous error model or some other model best de-
scribes errors in physical quantum computers.

In conclusion, we have presented a circuit 5-qubit QEC
for a LNN architecture, which achieves the same depth as the
current least depth circuit[24], and simulated its effective-
ness against both discrete and continuous errors. For the dis-
crete error model, if error correction is to provide an error
rate reduction of a factor of 10 or 100, the physical error rate
p must be 10−5 or 10−7, respectively. For the continuous error
model, it was acceptable for error angles to have a standard
deviation of up to 10−2 rad, as using QEC still gives an error
rate improvement better than a factor of 100.

Further simulation is required to determine the error
thresholds associated with 1- and 2-qubit LNN error-
corrected gates.
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TABLE III. Probability per time stepestep of a discrete error
when using 5-qubit QEC vs standard deviations of continuous
errors.

s Topt p estep estep/p

10−1 2.53101 5.9310−2 6.9310−3 1.2310−1

10−2 2.53102 5.9310−3 1.4310−5 2.4310−3

10−3 2.53103 6.0310−4 1.3310−8 2.2310−5

10−4 2.53104 6.0310−5 1.0310−11 1.7310−7

10−5 2.53105 6.0310−6 7.2310−15 1.2310−9
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