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Quantum-error correction on linear-nearest-neighbor qubit arrays
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A quantum circuit implementing 5-qubit quantum-error correction on a linear-nearest-neighbor architecture
is described. The canonical decomposition is used to construct fast and simple gates that incorporate the
necessary swap operations allowing the circuit to achieve the same depth as the current least depth circuit.
Simulations of the circuit’s performance when subjected to discrete and continuous errors are presented. The
relationship between the error rate of a physical qubit and that of a logical qubit is investigated with emphasis
on determining the concatenated error correction threshold.
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The field of quantum computation deals with the manipu-discussed and the LNN circuit presented. Following this,
lation of 2-state quantum systems called qubits. Many differsimulations of quantum data storage with and without QEC
ent physical systems are being investigated in the race tere presented. The paper concludes with a summary of all
build a scalable quantum compufér-6]. Due to the fragility — results.
of quantum systems, one property a scalable architecture The canonical decomposition enables any 2-qubit opera-
must possess is the ability to implement quantum-error cortor Uag to be expressednonuniquely in the form Vi
rection(QEC) [7-9]. The question has been raised as to how® VEUgUA® Ug whereU,, Ug, Va, and Vg are single-qubit
well QEC can be implemented on a linear-nearest-neighbaynitaries andUg=exfi(a,X® X+a Y® Y+a,Z®Z)] [25].
(LNN) quantum computef10] due to the expectation that Moreover, any entangling interaction can be used to create
numerous swap gates will be required. Working out a wayan arbitraryUy up to single-qubit rotationf26]. These two
around this is important due to the large number of LNNfacts allow the construction of very efficient composite gates
architectures currently under investigatiphl—23. In this ~ on any physical architecture. Figureal shows the form of
paper a 5-qubit QEC circuit appropriate for a LNN architec-such a decomposed controlladT (CNOT) gate on a Kane
ture is presented that achieves the same depth as the bégtantum computef1,27]. The 2-qubit interaction corre-
known circuit for an architecture able to interact arbitrarysponds tay,=a,=m/8 anda,=0. Z rotations have been rep-
pairs of qubits[24]. In this paper, the depth of the circuit is resented by quarter, half, and three-quarter circles corre-
used as a measure of quality of the circuit due to the need teponding taR,(7/2), R(w), andR,(37/2), respectively. Full
minimize the overall circuit time so that it is short in com- circles represer# rotations of angle dependent on the physi-
parison to the decoherence time of an individual qubit. Acal construction of the computer. Square gates 1 and 2 cor-
QEC circuit will not function unless this condition is met. respond toX rotationsR,(7) andR,(#/2). Figure 1b) shows

The paper is organized as follows. First, the canonicahn implementation of the composite gate Hadamard followed
decomposition used to construct efficient 2-qubit gates is disby cNOT gate which is followed by swap gat@iCNOTS).
cussed in brief. Details of the method used can be found ifNote that the total time of the compound gate is significantly
Ref. [25]. The Kane architecturgl] has been used to con- less than theNoOT gate on its own.
struct explicit decompositions, but the methods described ap- The above implies that the swaps inevitably required in a
ply to any architecture. The 5-qubit QEC scheme is therLNN architecture to bring qubits together to be interacted
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FIG. 1. Decomposition into physical operations(aef cNOT gate,(b) Hadamard gategNOT gate, then swap gate. Note that the Kane
architecture has been used for illustrative purposes. In addition to the clear speed advantage when implementing compound gates, the
decomposedNOT gate is faster than its adiabatic equival€2® us) [28].
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FIG. 2. 5-qubit encoding circuit for general architecture @imdequivalent circuit for linear-nearest-neighbor architecture with dashed
boxes indicating compound gatesvoT gates that must be performed sequentially are numbered.
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FIG. 3. A sequence of physical gates implementing the circuit of Rig). Note the Kane architecture has been used for illustrative

purposes.
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FIG. 4. Circuit equivalence used to reduce the number of physical gates in Fig. 3.
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FIG. 5. A complete encode-wait-decode-measure-correct QEC cycle.
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TABLE |. Action required to correct the data qubit’ vs mea- TABLE II. Probability per time stepege, of a discrete error
sured value of ancilla qubits. Note that tbeoperations simply when using 5-qubit QEC vs physical probabilipyper qubit per
reset the ancilla. time step of a discrete error.

Measurement Action p Topt Estep Este P
¥’ ® 0000 =31 1072 25 1.7X 1072 1.7x10°
¥’ ®0001 I® 11X 1.6x10°° 40 1.6x10°3 1.0x 10°
v’ ®0010 1 1IXI 10738 50 8.4x 1074 8.4x 107t
V' ®0011 Z& IIXX 10 150 3.1x 107 3.1x 101
v’ ®0100 1 IXII 10°° 750 1.1x 106 1.1x101
¥’ ®0101 X® IXIX 10°® 1500 3.2x10°8 3.2x1072
v'®0110 Z& IXXI 1077 6000 1.1x10°° 1.1x107?
V' ®0111 X® IXXX 108 10000 2.0<10% 2.0x10°8
¥’ ® 1000 Ze Xl
V' 1001 I® XI1X , o _ _ ,
W' %1010 X& XIXI tion of some description is required to decouple neighboring

qubits, which inevitably leads to errors.

Vo101l X@XIXX Two error models were used—discrete and continuous. In
¥’ ®1100 28 XXII the discrete model a qubit can suffer either a bit flif),
V' ®1101 Ze XXII phase flip(Z), or both simultaneouslyXZ). Each type of
V' ®1110 XZ@ XXXI error is equally likely with total probability of errop per
v'®1111 ZR XXXX qubit per time step. The continuous error model involves
applying single-qubit unitary operations of the form
can be incorporated into other gates without additional cost. _( cog 0/2)e P2 sin(g2)e P2 ) 0
Indeed, in certain cases LNN circuits built out of compound o7\ = sin(6/2)dC*B2 coq gl2)e-eP2 )’

gates are actually faster. o )
5-qubit quantum-error correction schemes are designed t§here a, 8, and ¢ are normally distributed about 0 with

correct a single arbitrary error. No single error correctionStandard deviatiow. _ _ _

scheme can use less than 5 qufg]. A number of 5-qubit Both the single-qubit and single-logical quité qubity

QEC proposals exig8,9,24,30,31 Figure Zb) shows a cir- Systems were simulated. The initial state

cuit appropriate for a LNN architecture implementing the .

encode stage of the QEC scheme proposed in [Réf. For [¥) = sin(w/8)|0) + cogm/B)| 1) @

reference, the original circuit is shown in FigaR Note that  was used in both cases B¥|X|¥)|?=0.5, (¥|Z|¥)[>=0.5,

the LNN.circuit uses exactly th_e same numbecabT gates  and|(W|XZ¥)|2=0 thus allowing each type of error to be

and achieves minimal depth since teoT gates numbered getected (but not necessarily distinguished Simpler

1-6 in Fig. 2a) must be performed sequentially on any ar- gtates such ao), |1), (|0>+|1>)/\;§, and(|0>—|1>)/\s‘”§ do

chitecture that can only i“nteract"pairs ofqutﬁ'rngt3_or More ot have this property. For example, the std@sand|1)

at oncg. _The two extra “naked swap gates in F_|qb)_2do are insensitive to phase errors, whereas the other two

not significantly add to the total time of the circuit. Figure 3 states are insensitive to bit flip errors.

shows an equivalent circuit broken into physical operations Let T,,.;; denote the duration of the wait stage. Note that

for a Kane quantum computer. Note that this circuit uses thé,e tota| duration of the encode, decode, measure, and correct
fact that if two 2-qubit gates share a qubit then two smgle-Stages is 14. In the QEC case the total tiftweT, -+ 14 of

gubltdumt_ane_s can bel cor:nbmed das shown in E'g'kA" -I(_jh%ne QEC cycle was varied to determine the time that mini-
ecode circuit is simply the encode circuit run backwards ni;e3 the error per time step

All 5-qubit QEC schemes are only useful for data storggje

due to the difficulty of interacting two logical qubits. Figure €step= 1 = V1 = €final, (3)

5 shows a full encode-wait-decode-measure-correct data

storage cycle. Table | shows the range of possible measur#hereegny=1-|(¥’|¥)[? and|¥’) is the final logical qubit

ments and the action required in each case. state. An optimal timeT,,; exists since the logical qubit is
When simulating the QEC cycle, the circuit of Fighp  only protected during the wait stage and the correction pro-

was used to keep the analysis architecture independent. Eacss can only cope with one error. If the wait time is zero,

gate was modeled as taking the same time, allowing the timextra complexity has been added but no corrective ability.

T to be made an integer such that each gate takes one tinsmilarly, if the wait time is very large, it is almost certain

step. Gates were furthermore simulated as though perfectihat more than one error will occur, resulting in the qubit

reliable and errors applied to each quiiitcluding idle qu- being destroyed during the correction process. Somewhere

bits) at the end of each time step. The rationale for includingbetween these two extremes is a wait time that minimizes

idle qubits is that in a LNN architecture physical manipula- €5, Table Il showsT,;, €gep and the reduction in error
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TABLE lII. Probability per time stepeg.,, of a discrete error
when using 5-qubit QEC vs standard deviationof continuous
errors.

o Topt p Estep Estep/ p

101 2.5x10"  5.9%x1072 6.9x1073 1.2x101
1072 25x10¢ 59x10° 1.4x10°° 2.4x1073
1078 25x10°  6.0x10°* 1.3x10°8 2.2x107°
104 25x10*  6.0x10° 1.0x10%  1.7x107
10° 25x10°  6.0x10°% 72x101  1.2x10°
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=10"° or p=107" is required, respectively. Further work is
required to determine the error rate improvement required to
allow robust implementation of large scale quantum algo-
rithms with a reasonable number of error correction qubits.

For continuous errors, there is no true threshold. Even for
very large random unitary rotations an improvement is still
gained by using the LNN QEC circuit. In this case, provided
gates can be implemented such that the angles associated
with the continuous error model are of order-3,0an im-
provement in error rate of at least a factor of 100 can be
achieved.

Further work is required to determine whether the discrete

&step/ P Versusp for discrete errors. Table Il shows the cor- Of .continuous-error n_10de| or some other model best de-
responding data for continuous errors. Note that, in the conscribes errors in physical quantum computers.

tinuous case, the single quipithas been obtained via 1-qubit
simulations and a 1-qubit version of E@).

The range of threshold error ratgsin the literature is
enormous, from a very pessimistiz=102 [32] to a very
optimistic p=2x103 [33]. The thresholdp=1.6x 1073

In conclusion, we have presented a circuit 5-qubit QEC
for a LNN architecture, which achieves the same depth as the
current least depth circu24], and simulated its effective-
ness against both discrete and continuous errors. For the dis-
crete error model, if error correction is to provide an error

shown in Table Il is comparable to the most optimistic pre-rate reduction of a factor of 10 or 100, the physical error rate
vious estimate which was made using 7-qubit fault toleranp must be 10° or 10, respectively. For the continuous error
QEC with errors applied only after gate operations and not tanodel, it was acceptable for error angles to have a standard
idle qubits. This threshold should not, however, be thoughtleviation of up to 10? rad, as using QEC still gives an error
of as the allowable operating error rate of a physical quantuniate improvement better than a factor of 100.

computer as precisely no improvement in error rate is Further simulation is required to determine the error
achieved when using QEC. If an error rate improvement of dhresholds associated with 1- and 2-qubit LNN error-

factor of 10 or 100 is desired when using QEC then

corrected gates.
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