60 research outputs found

    Solution of an Enumerative Problem Connected with Lattice Paths

    Get PDF

    A Central Partition of Molecular Conformational Space.III. Combinatorial Determination of the Volume Spanned by a Molecular System

    Full text link
    In the first work of this series [physics/0204035] it was shown that the conformational space of a molecule could be described to a fair degree of accuracy by means of a central hyperplane arrangement. The hyperplanes divide the espace into a hierarchical set of cells that can be encoded by the face lattice poset of the arrangement. The model however, lacked explicit rotational symmetry which made impossible to distinguish rotated structures in conformational space. This problem was solved in a second work [physics/0404052] by sorting the elementary 3D components of the molecular system into a set of morphological classes that can be properly oriented in a standard 3D reference frame. This also made possible to find a solution to the problem that is being adressed in the present work: for a molecular system immersed in a heat bath we want to enumerate the subset of cells in conformational space that are visited by the molecule in its thermal wandering. If each visited cell is a vertex on a graph with edges to the adjacent cells, here it is explained how such graph can be built

    A second look at the toric h-polynomial of a cubical complex

    Full text link
    We provide an explicit formula for the toric hh-contribution of each cubical shelling component, and a new combinatorial model to prove Clara Chan's result on the non-negativity of these contributions. Our model allows for a variant of the Gessel-Shapiro result on the gg-polynomial of the cubical lattice, this variant may be shown by simple inclusion-exclusion. We establish an isomorphism between our model and Chan's model and provide a reinterpretation in terms of noncrossing partitions. By discovering another variant of the Gessel-Shapiro result in the work of Denise and Simion, we find evidence that the toric hh-polynomials of cubes are related to the Morgan-Voyce polynomials via Viennot's combinatorial theory of orthogonal polynomials.Comment: Minor correction

    Noncommutative probability, matrix models, and quantum orbifold geometry

    Get PDF
    Inspired by the intimate relationship between Voiculescu's noncommutative probability theory (of type A) and large-N matrix models in physics, we look for physical models related to noncommutative probability theory of type B. These turn out to be fermionic matrix-vector models at the double large-N limit. In the context of string theory, they describe different orbifolded string worldsheets with boundaries. Their critical exponents coincide with that of ordinary string worldsheets, but their renormalised tree-level one-boundary amplitudes differ.Comment: 22 pages, 8 eps figures, LaTeX2.09; title changed, mistakes correcte

    Lyashko-Looijenga morphisms and submaximal factorisations of a Coxeter element

    Full text link
    When W is a finite reflection group, the noncrossing partition lattice NCP_W of type W is a rich combinatorial object, extending the notion of noncrossing partitions of an n-gon. A formula (for which the only known proofs are case-by-case) expresses the number of multichains of a given length in NCP_W as a generalised Fuss-Catalan number, depending on the invariant degrees of W. We describe how to understand some specifications of this formula in a case-free way, using an interpretation of the chains of NCP_W as fibers of a Lyashko-Looijenga covering (LL), constructed from the geometry of the discriminant hypersurface of W. We study algebraically the map LL, describing the factorisations of its discriminant and its Jacobian. As byproducts, we generalise a formula stated by K. Saito for real reflection groups, and we deduce new enumeration formulas for certain factorisations of a Coxeter element of W.Comment: 18 pages. Version 2 : corrected typos and improved presentation. Version 3 : corrected typos, added illustrated example. To appear in Journal of Algebraic Combinatoric

    Invariant Peano curves of expanding Thurston maps

    Full text link
    We consider Thurston maps, i.e., branched covering maps f ⁣:S2S2f\colon S^2\to S^2 that are postcritically finite. In addition, we assume that ff is expanding in a suitable sense. It is shown that each sufficiently high iterate F=fnF=f^n of ff is semi-conjugate to zd ⁣:S1S1z^d\colon S^1\to S^1, where dd is equal to the degree of FF. More precisely, for such an FF we construct a Peano curve γ ⁣:S1S2\gamma\colon S^1\to S^2 (onto), such that Fγ(z)=γ(zd)F\circ \gamma(z) = \gamma(z^d) (for all zS1z\in S^1).Comment: 63 pages, 12 figure

    Quantum Symmetries and Strong Haagerup Inequalities

    Full text link
    In this paper, we consider families of operators {xr}rΛ\{x_r\}_{r \in \Lambda} in a tracial C^\ast-probability space (A,ϕ)(\mathcal A, \phi), whose joint \ast-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups {Hn+}nN\{H_n^+\}_{n \in \N}. We prove a strong form of Haagerup's inequality for the non-self-adjoint operator algebra B\mathcal B generated by {xr}rΛ\{x_r\}_{r \in \Lambda}, which generalizes the strong Haagerup inequalities for \ast-free R-diagonal families obtained by Kemp-Speicher \cite{KeSp}. As an application of our result, we show that B\mathcal B always has the metric approximation property (MAP). We also apply our techniques to study the reduced C^\ast-algebra of the free unitary quantum group Un+U_n^+. We show that the non-self-adjoint subalgebra Bn\mathcal B_n generated by the matrix elements of the fundamental corepresentation of Un+U_n^+ has the MAP. Additionally, we prove a strong Haagerup inequality for Bn\mathcal B_n, which improves on the estimates given by Vergnioux's property RD \cite{Ve}
    corecore