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Solution of an Enumerative Problem Connected with Lattice Paths 

G. KREWERAS AND H. NIEDERHAUSEN 

In the integer plane Z x Z, we call horizontal step a step from some (x, y) to (x + 1, y) and 
vertical step a step from some (x, y) to (x, y -1), and we consider the paths starting from 
(0, q) and reaching (p, 0) with p horizontal and q vertical steps. It is clear that these paths 
form a set ~ of cardinality (p+q)!/p!q!, which may be (partially) ordered by 
"dominance": a path C dominates C' if C'lies entirely between C and the path along the 
coordinate axes ("between" is meant in the broad sense). 

Let w(C) be the number of distinct paths dominated by C. Then it has been proved by 
one of the authors [1] that 

L w(C)= (p+q)!(p+q+1)! 
Ce'f p!(p + l)!q!(q + I)! 

(1) 

(this result is in fact a particular case of a more general result appearing in [2, vol. 2, p. 
242]). 

The aim of the present paper is to prove a formula that has been a conjecture for several 
years, namely 

L [w(C)]2= (p+q+1)!(2p+2q+1)! 
Ce'f (p + 1)!(2p + l)!(q + 1)!(2q + I)! 

(2) 

(It is obvious by symmetry that the words "dominated by" in the definition pf w(C) could 
be replaced by "dominating" without change of validity of (1) or (2).) 

In the sequel we shall call [a, b] the set of integers z such that a ~ z ~ b, and note lSI the 
cardinality of any set S. 

Since each path in ce can be defined by the sequence of the p ordinates of its horizontal 
steps, it is clear that the first member of (2) is also equal to IE(p, q)l, where the general 
element of E(p, q) is defined as a sequence of p triples (Uj, Vj, w;) having the following 
properties: 

ie[l,q] 

ie[l,q] 

i E [1, q -1]. 

Another way to describe E(p, q) is to consider e E E(p, q) as a sequence of 3q integers, 
e = (Uh ... , Uq, Vb ••. , Vq, Wb .•• , wq ), which meet conditions (i), (ii), (iii). 
The following remarks are obvious: 

(A) IE(p, q)1 = IE(q, p)1 (symmetric roles of the coordinates), 

(B) IE(O, q)1 = IE(p, 0)1 = 1 (the only element of E(O, q) is the sequence of 3q zeros, 
while the only element of E(p,O) is the "empty 
sequence"). 

In order to formulate two further essential remarks about E(p, q), we shall also have to 
consider a set F(q), which is by definition the part of E(3q, q) consisting of permutations of 
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[1, 3q]. It was proved in [1] (unfortunately by a far-fetched method) that 

22q (3q)! 
IF(q)1 = (q + 1)!(2q + 1)! (3) 

With each sequence e E E(p, q) a permutation f E F(q) can be associated in the following 
way: 
number from left to right, with 3q increasing integers starting from 1, first of all the O's of e 
(if there are any), then all the 1 's (if there are any), and so on, finishing by the p's (if there 
are any). The permutation f obtained from e will be called the numbering of e; each of the 
3q terms of e will have its own number. 

We can now define, for any e E E(p, q) with p ~ 1, an integer w(e) which we shall call its 
depth: the depth of e is by definition the smallest k such that we obtain an element 
e' E E(p -1, q) with the same numbering as e, if we decrease by one the k terms in e with 
largest numbers. w(e) = 0 if and only if there are no p's in e. If there are p's, the definition 
of numbering implies that we can list them by decreasing numbers. Then we list the 
(p -1)'s, if there is one at the right of the leftmost p, and so on. We stop as soon as we can 
find no i - 1 at the right of the leftmost i; the depth is then the number of listed terms 
provided the last of them is ~ 1. One possible case is that all the 3q terms are listed but the 
last of them (el) is 0; in this case there is no acceptable e' and we say, by natural convention, 
that the depth is 3q + 1. 

The concept of depth can be illustrated by the following example with q = 5, in which all 
the sequences correspond to the same numbering. 

f= (1 2 5 6 8 3 4 11 12 13 7 9 10 14 15) 

(0 3 4 4 5 3 3 7 7 7 4 6: 6 7 7) E E(7, 5), depth 7 
(0 3 4 4 5 3 3 6 6 6 4 5 5 6 6) E E(6, 5), depth 14 
(0 2 3 3 4 2 2 5 5 5 3 4 4 5 5) E E(5, 5), depth 14 
(0 1 2 2 3 1 1 4 4 4 2 3 3 4 4) E E(4, 5), depth 14 
(0 0 1 1 2 o 0 3 3 3 1 2 2 3 3) E E(3, 5), depth 16 

A fundamental remark about depths is that for any p ~ 1 and w E [0, 3q] there are exactly 
as many elements in E(p, q) with depth w as in E(p -1, q) with depth ~w. 

The reason is that from any element e' with depth ~w belonging to E(p -1, q) we can 
form an element e of E(p, q) by increasing by 1 the w terms of e' with largest numbers; the 
depth of this e in E(p, q) is then exactly wand the numbering remains the same. It is easy to 
check that this correspondence is bijective. Thus, if we call d:(k) the number of elements 
in E(p, q) with depth ~k, we can write 

'tIk E [0, 3q]. 

A further important property of the depths will be expressed by the following equality: 

(0) d:(3q + 1) = d~q-l-p(3q + 1). 

To justify (0), we have to remember that a sequence e E E(p, q) is of depth 3q + 1 if and 
only if, for any i E [1, p], the last i -1 appears in e after the first i. The corresponding 
numberingf of e has then exactly p switchbacks (Le. opportunities in which some number k 
stands before k -1), since the number of the first i follows immediately the number of the 
last i -1. Furthermore, if a permutation with p switchbacks is given in F(q), the 
corresponding e is uniquely determined in E(p, q). Thus(O) will be proved if we can prove 
that there are, in F(q), exactly as many permutations with p switchbacks as with 2q - 1 - P 
switchbacks. 
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The latter fact is a consequence of some general properties about finite partially ordered 
sets ("posets"), such as investigated by R. Stanley in [3]. For a poset M of m elements, 
there exists a set L of "linear extensions", i.e. of total orders on M which are consistent with 
the partial order. If a particular extension a E L is considered, the elements of M can then 
be re-Iabeled from 1 to m in such a way that a corresponds to the natural (increasing) order 
of the labels. 

After this labeling, any linear extension of M may be viewed as a permutation of [1, m], 
which has a certain number p of descents (i.e. opportunities in which some label i stands 
before any smaller label); p belongs always to [0, m - h], and a sequence 10 , It, ... , Im - h is 
defined, in which Ip is the number of linear extensions with p descents (10 + 11 + ... + Im - h = 
ILl). 

What Stanley's results imply is (of course with quite different notations): 

(1) that the sequence Ip is independent of the particular choice of a in L [3, p. 43], 
(2) that if all the maximal chains of M consist exactly of h elements, the sequence Ip has 

the property Ip = Im - h - p (internal symmetry) [3, p. 71]. 

As M we may now take the following set Mq of m = 3q points in r~P: 

(0,0, z), (1,0, z), (0, 1, z), with Z E [0, q -1], 

the partial order being defined by 

[(x', y', z'):s;;(x, y, z)]~[x':s;;x, y':S;;y, z':s;;z]. 

In other words, Mq is the direct product of a q-element chain with the three-element poset 
y. 

A particular a E L is the linear extension 

(0,0,0), (0, 0, 1), ... , (0, 0, q -1), (1, 0, 0), (1, 0, 1), ... , (1, 0, q -1), 

(0, 1,0), (0, 1, 1), ... , (0, 1, q -1). 

After Mq is labeled corresponding to a, take any bEL, now written as a permutation. 
Let i(k) be the index of k in b, i.e. bi(k)=k. Define f(b)=(i(1), ... ,i(3q)). Then 
f(b) E F(q), and the number of descents in b equals the number of switchbacks in f(b). But 
this correspondence between Land F(q) is one-to-one; hence, (D) is proved if we can 
show that Ip = 12q - 1- p. This is true because all maximal chains of Mq start at (0, 0, 0) and 
reach either (1,0, q -1) or (0, 1, q -1), i.e. consist of exactly h = q + 1 points. 

(A) and (B) can of course be reformulated: 

(A') d~(O) = d:(O), 

(B') dti(k) = 1 Vk E [0, 3q + 1] (since the only element of E(O, q) is of depth 3q + 1). 

It appears from (B') and (C), by recursion with respect to p, that the expression of d~(k) 
as a function of k will be a polynomial of degree p. Let us, for any integer q ~ 1, call D~(t) 
the corresponding polynomial of a variable t E 7L; we have then the following four 
conditions: 

(A") D~(O) = D:(O) for any integer p ~ 1, 

(B") Dti(t) == 1, 

(C") .JD~(t) = -D~-1 (t) for any integer p ~ 1, 

(D") D~(3q + 1) = Diq -l-p(3q + 1) (D~(t) = ° for any negative n, consistently 
with (B") and (C")). 
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This family of polynomials D:(t) is unique. To prove it, we first notice from (e") that D~(t) 
is determined if D~-l (t) is given and one single initial value of D~(t) is prescribed. Of 
course, DZ is always obtained from (B"). Now assume that D; is known for all i = 
1, ... , q -1 and for all j EN, and that Di is known for all i = 0, ... ,p -1. If p < q, we get 
the initial value for D: from (A"), and we get it from (D") otherwise. 

In order to prove (2) finally, we have to prove that the value of both sides of (A), or (A'), 
or (A"), is precisely equal to the right-hand side of (2), i.e. equal to 

(p+q+1)!(2p+2q+1)! .. 
(p + 1)!(2p + 1)!(q + 1)!(2q + 1)! = K(p, q) (by defimtlOn). 

The table below gives the first values of K(p, q), which happen to be positive integers: 

)'Zo 
o 
1 
2 1 
3 1 
4 1 
5 1 

2 

5 14 
14 84 
30 330 
55 

3 4 5 

1 1 1 
30 55 

330 

Our task will be done by exhibiting a family of polynomials which meets the require
ments (A") to (D"), and thus coincides with D:(t), and by checking that D:(O) = K(p, q). 

We begin by introducing a sequence of polynomials of a variable n E 7L, 

Ko(n), K1(n), K 2(n), . .. , Kq(n), . . , 

defined hy 

(n+q+l) (2n+2q+1h 
Kq(n) = (q + 1)!(2q + 1)! q (Vandermonde notation), 

where (X)q =X(X -1)' ... '(X -q + 1) and (X)o = 1. Kq(n) has following properties: 

(a) Kq(n) is of degree 3q; 

(b) if n EN, Kq(n) = K(n, q) = Kn(q); 

(c) if q;l!! 1, Kq(n) vanishes for n E [-q -1, -1]; 

(d) Kq(-n -q -2) = (-1)qKq(n); 

(e) Kq(n) is integer-valued. 

(a), (b), (c) and (d) are either obvious or easy to check; (e) can be proved by recursion 
with respect to q, because any polynomial of degree 3q of n E 7L is integer-valued provided 
it has 3q + 1 consecutive integer values. Ko(n) = 1, 

(n + 2)(n + 1)(2n + 3) " . 
and Kl (n) = 6 IS mteger-valued smce, 

for n;l!! 0, it is known to be the sum of the squares of 1,2, ... , n + 1. Once we know that 
Ko(n), K1(n), . .. ,Kq_1(n) are integer-valued, we can note that Kq(n) is an integer for ° ~ n ~ q -1 as a consequence of (b), for -(2q + 1) ~ n ~ -(q + 2) as a consequence of (d), 
and for -(q + 1) ~ n ~ -1 as a consequence of (c), which yields 3q + 1 consecutive integer 
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values and completes the proof of (e). In particular, all the numbers K{p, q) are positive 
integers, which was not obvious from the outset. 

(Note that what is called here Kq (n) is, in Stanley's terminology [3], the order polynomial 
(}{Mq{n) of the poset Mq.) 

Let us now define, for q ~ 1, a new set of integers ag, at ... , ai, ... , aiq-lo by 

(3q + 1) n (3 q + 1) a~=Kq{n)- 1 K q{n-1)+·· ·+(-1) n Kq{O). (4) 

By (a), the (3q + 1)th difference of Kq{n) is identically O. This remark, combined with (d) 
and the definition of a~, shows the internal symmetry a~ = aiq-l-n.1t is also natural to set 
a~ = 0 if ne [0, 2q -1]. 

Furthermore, (4) can be inverted by writing 

the inversion offers no difficulty by whatever method. 

We can now assert that 

D~(t)= f (_1)p-na~.(t-3q-1), 
n=O p - n 

which will be done by proving that the conditions (A")-{D") are met. 

(A"): D~{O) is obtained by setting t = 0 in each term of the above sum. But 

{_1y-n (-3q -1) = (3q +p -n). 
p-n p-n 

Thus 

D~{O)= f (3
q

+
p

-n) a~ = Kq{p) 
n=O p-n 

from (5), which proves (A") since (b) is true. 

(B"): Obvious. 

(e"): ~ (t-3q -1) = (t-3q -1), 
p-n p-n-1 

which, by the linear combination in (6), yields -D~-l (t). 

(5) 

(6) 

(D"): For t = 3q + 1, the only non-zero binomial on the right-hand side of (6) is obtained 
for n :;: p; hence 

(7) 

and (D") results from a~ = aiq-l-p. 
This completes the proof of (2). 

The above proof has several interesting by-products. First, (7) indicates that a ~ is 
nothing else but the number of linear extensions of Mq with exactly p switchbacks. A table 
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is given below. 

q=1 
2 
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7 

1 

7 

These numbers appear in [1] with different notations, essentially as intermediate analytical 
tools to prove (3), without indication of their enumerative meaning. 

Another by-product is to make it possible to prove (3) in a much simpler (although 
slightly less general) way than in [1]. Indeed IF(q)1 is the total number of linear extensions 
ofMq : 

i.e. IF(q)l=a6+ai+" ·+aiq-l. 

Applying (4), we easily find that this sum is equal to 

Kq(2q -1)-C1
q

) Kq(2q -2) + C2
q

) Kq(2q -3)-· .. -(2:~ 1) Kq(O), 

which we can complete formally by q + 1 other terms with value 0, namely 

( 3
q

) K (-1)-( 3q ) K (-2)+" ·+(-1)qK (-q-1). 2q q 2q + 1 q q 

Consequently IF(q)1 is equal to the (3q)th difference of Kq(n), which is a constant coming 
from the term of highest degree (3q) of Kq(n). This term is 

n q(2n)2q 22qn 3q 

(q + 1)!(2q + 1)! (q + 1)!(2q + 1)! 

and the (3q )th difference is seen to be 

2
2q

.(3q)! . 
(q + 1)!(2q + 1)!' 

hence (3). 
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