30,197 research outputs found

    Soil sustainability in organic agricultural production

    Get PDF
    Traditionally, the assessment of soil sustainability and the potential impact of cultivation are based upon the application of chemical procedures. In the absence of a biological context, these measurements offer little in understanding longterm changes in soil husbandry. Detailed microcosm investigations were applied as a predictive tool for management change. The microcosms were designed with homogenised soils treated with organic amendments. Key soil functional relationships were quantified using stable isotope techniques, biochemical measurements and traditional approaches

    Squeezing out the last 1 nanometer of water: A detailed nanomechanical study

    Full text link
    In this study, we present a detailed analysis of the squeeze-out dynamics of nanoconfined water confined between two hydrophilic surfaces measured by small-amplitude dynamic atomic force microscopy (AFM). Explicitly considering the instantaneous tip-surface separation during squeezeout, we confirm the existence of an adsorbed molecular water layer on mica and at least two hydration layers. We also confirm the previous observation of a sharp transition in the viscoelastic response of the nanoconfined water as the compression rate is increased beyond a critical value (previously determined to be about 0.8 nm/s). We find that below the critical value, the tip passes smoothly through the molecular layers of the film, while above the critical speed, the tip encounters "pinning" at separations where the film is able to temporarily order. Pre-ordering of the film is accompanied by increased force fluctuations, which lead to increased damping preceding a peak in the film stiffness once ordering is completed. We analyze the data using both Kelvin-Voigt and Maxwell viscoelastic models. This provides a complementary picture of the viscoelastic response of the confined water film

    Transport theory yields renormalization group equations

    Full text link
    We show that dissipative transport and renormalization can be described in a single theoretical framework. The appropriate mathematical tool is the Nakajima-Zwanzig projection technique. We illustrate our result in the case of interacting quantum gases, where we use the Nakajima-Zwanzig approach to investigate the renormalization group flow of the effective two-body interaction.Comment: 11 pages REVTeX, twocolumn, no figures; revised version with additional examples, to appear in Phys. Rev.

    Are osseous artefacts a window to perishable material culture? Implications of an unusually complex bone tool from the Late Pleistocene of East Timor

    Get PDF
    We report the discovery of an unusually complex and regionally unique bone artefact in a Late Pleistocene archaeological assemblage (c. 35 ka [thousands of years ago]) from the site of Matja Kuru 2 on the island of Timor, in Wallacea. The artefact is interpreted as the broken butt of a formerly hafted projectile point, and it preserves evidence of a complex hafting mechanism including insertion into a shaped or split shaft, a complex pattern of binding including lateral stabilization of the cordage within a bilateral series of notches, and the application of mastic at several stages in the hafting process. The artefact provides the earliest direct evidence for the use of this combination of hafting technologies in the wider region of Southeast Asia, Wallacea, Melanesia and Australasia, and is morphologically unparallelled in deposits of any age. By contrast, it bears a close morphological resemblance to certain bone artefacts from the Middle Stone Age of Africa and South Asia. Examination of ethnographic projectile technology from the region of Melanesia and Australasia shows that all of the technological elements observed in the Matja Kuru 2 artefact were in use historically in the region, including the unusual feature of bilateral notching to stabilize a hafted point. This artefact challenges the notion that complex bone-working and hafting technologies were a relatively late innovation in this part of the world. Moreover, its regional uniqueness encourages us to abandon the perception of bone artefacts as a discrete class of material culture, and to adopt a new interpretative framework in which they are treated as manifestations of a more general class of artefacts that more typically were produced on perishable raw materials including wood

    Constructing new optimal entanglement witnesses

    Get PDF
    We provide a new class of indecomposable entanglement witnesses. In 4 x 4 case it reproduces the well know Breuer-Hall witness. We prove that these new witnesses are optimal and atomic, i.e. they are able to detect the "weakest" quantum entanglement encoded into states with positive partial transposition (PPT). Equivalently, we provide a new construction of indecomposable atomic maps in the algebra of 2k x 2k complex matrices. It is shown that their structural physical approximations give rise to entanglement breaking channels. This result supports recent conjecture by Korbicz et. al.Comment: 9 page

    Shades of Grey: Ethical Dilemmas

    Get PDF
    No abstract available

    Removing black-hole singularities with nonlinear electrodynamics

    Full text link
    We propose a way to remove black hole singularities by using a particular nonlinear electrodynamics Lagrangian that has been recently used in various astrophysics and cosmological frameworks. In particular, we adapt the cosmological analysis discussed in a previous work to the black hole physics. Such analysis will be improved by applying the Oppenheimer-Volkoff equation to the black hole case. At the end, fixed the radius of the star, the final density depends only on the introduced quintessential density term ργ\rho_{\gamma} and on the mass.Comment: In this last updated version we correct two typos which were present in Eqs. (21) and (22) in the version of this letter which has been published in Mod. Phys. Lett. A 25, 2423-2429 (2010). In the present version, both of Eqs. (21) and (22) are dimensionally and analytically correc
    corecore