1,488 research outputs found

    Electronic structure of superposition states in flux qubits

    Full text link
    Flux qubits, small superconducting loops interrupted by Josephson junctions, are successful realizations of quantum coherence for macroscopic variables. Superconductivity in these loops is carried by 106\sim 10^6 -- 101010^{10} electrons, which has been interpreted as suggesting that coherent superpositions of such current states are macroscopic superpositions analogous to Schr\"odinger's cat. We provide a full microscopic analysis of such qubits, from which the macroscopic quantum description can be derived. This reveals that the number of microscopic constituents participating in superposition states for experimentally accessible flux qubits is surprisingly but not trivially small. The combination of this relatively small size with large differences between macroscopic observables in the two branches is seen to result from the Fermi statistics of the electrons and the large disparity between the values of superfluid and Fermi velocity in these systems.Comment: Minor cosmetic changes. Published version

    Autotuning Algorithmic Choice for Input Sensitivity

    Get PDF
    Empirical autotuning is increasingly being used in many domains to achieve optimized performance in a variety of different execution environments. A daunting challenge faced by such autotuners is input sensitivity, where the best autotuned configuration may vary with different input sets. In this paper, we propose a two level solution that: first, clusters to find input sets that are similar in input feature space; then, uses an evolutionary autotuner to build an optimized program for each of these clusters; and, finally, builds an adaptive overhead aware classifier which assigns each input to a specific input optimized program. Our approach addresses the complex trade-off between using expensive features, to accurately characterize an input, and cheaper features, which can be computed with less overhead. Experimental results show that by adapting to different inputs one can obtain up to a 3x speedup over using a single configuration for all inputs

    Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays

    Full text link
    We present a derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that inclusion of local chemical potential and driving velocity fields as a gauge field allows derivation of the hydrodynamic equations of motion for the driven macroscopic phase differences across simple aperture arrays. For a single aperture, the current-phase equation for driven flow contains sinusoidal, linear, and current-bias contributions. We compute the renormalization group (RG) beta function of the periodic potential in the effective action for small tunneling amplitudes and use this to analyze the temperature dependence of the low-energy current-phase relation, with application to the transition from linear to sinusoidal current-phase behavior observed in experiments by Hoskinson et al. \cite{packard} for liquid 4^{4}He driven through nanoaperture arrays. Extension of the microscopic theory to a two-aperture array shows that interference between the microscopic tunneling contributions for individual apertures leads to an effective coupling between apertures which amplifies the Josephson oscillations in the array. The resulting multi-aperture current-phase equations are found to be equivalent to a set of equations for coupled pendula, with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte

    Long-range energy transport in photosystem II.

    Get PDF
    We simulate the long-range inter-complex electronic energy transfer in photosystem II-from the antenna complex, via a core complex, to the reaction center-using a non-Markovian (ZOFE) quantum master equation description that allows the electronic coherence involved in the energy transfer to be explicitly included at all length scales. This allows us to identify all locations where coherence is manifested and to further identify the pathways of the energy transfer in the full network of coupled chromophores using a description based on excitation probability currents. We investigate how the energy transfer depends on the initial excitation-localized, coherent initial excitation versus delocalized, incoherent initial excitation-and find that the overall energy transfer is remarkably robust with respect to such strong variations of the initial condition. To explore the importance of vibrationally enhanced transfer and to address the question of optimization in the system parameters, we systematically vary the strength of the coupling between the electronic and the vibrational degrees of freedom. We find that the natural parameters lie in a (broad) region that enables optimal transfer efficiency and that the overall long-range energy transfer on a ns time scale appears to be very robust with respect to variations in the vibronic coupling of up to an order of magnitude. Nevertheless, vibrationally enhanced transfer appears to be crucial to obtain a high transfer efficiency, with the latter falling sharply for couplings outside the optimal range. Comparison of our full quantum simulations to results obtained with a "classical" rate equation based on a modified-Redfield/generalized-Förster description previously used to simulate energy transfer dynamics in the entire photosystem II complex shows good agreement for the overall time scales of excitation energy transport

    Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems

    Full text link
    Confined quantum systems involving NN identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly, intermediate, and strongly-interacting systems has been set forth by the authors in a previous series of papers. Dimensional perturbation theory was used, and in conjunction with group theory, an analytic beyond-mean-field correlated wave function at lowest order for a system under spherical confinement with a general two-body interaction was derived. In the present paper, we use this analytic wave function to derive the corresponding lowest-order, analytic density profile and apply it to the example of a Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was submitted after responding to a reviewer's comment

    Formation of atomic tritium clusters and condensates

    Get PDF
    We present an extensive study of the static and dynamic properties of systems of spin-polarized tritium atoms. In particular, we calculate the two-body |F,m_F>=|0,0> s-wave scattering length and show that it can be manipulated via a Feshbach resonance at a field strength of about 870G. Such a resonance might be exploited to make and control a Bose-Einstein condensate of tritium in the |0,0> state. It is further shown that the quartet tritium trimer is the only bound hydrogen isotope and that its single vibrational bound state is a Borromean state. The ground state properties of larger spin-polarized tritium clusters are also presented and compared with those of helium clusters.Comment: 5 pages, 3 figure

    Coherence-Preserving Quantum Bits

    Full text link
    Real quantum systems couple to their environment and lose their intrinsic quantum nature through the process known as decoherence. Here we present a method for minimizing decoherence by making it energetically unfavorable. We present a Hamiltonian made up solely of two-body interactions between four two-level systems (qubits) which has a two-fold degenerate ground state. This degenerate ground state has the property that any decoherence process acting on an individual physical qubit must supply energy from the bath to the system. Quantum information can be encoded into the degeneracy of the ground state and such coherence-preserving qubits will then be robust to local decoherence at low bath temperatures. We show how this quantum information can be universally manipulated and indicate how this approach may be applied to a quantum dot quantum computer.Comment: 5 pages, 1 figur

    Vibration-enhanced quantum transport

    Full text link
    In this paper, we study the role of collective vibrational motion in the phenomenon of electronic energy transfer (EET) along a chain of coupled electronic dipoles with varying excitation frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduces correlations in the energy gap fluctuations which cause coherent EET. Inspired by these results, we present a simple model in which a driven nanomechanical resonator mode modulates the excitation energy of coupled quantum dots and find that this can indeed lead to an enhancement in the transport of excitations across the quantum network. Disorder of the on-site energies is a key requirement for this to occur. We also show that in this solid state system phase information is partially retained in the transfer process, as experimentally demonstrated in conjugated polymer samples. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final published versio
    corecore