85 research outputs found

    Echo of the Younger Dryas in Holocene Lake Sediments on the Tibetan Plateau

    Get PDF
    Reading the sediment record in terms of past climates is challenging since linking climate change to the associated responses of sedimentary systems is not always straightforward. Here we analyze the erosional response of landscapes on the Tibetan Plateau to interglacial climate forcing. Using the theory of dynamical systems on Holocene time series of geochemical proxies, we derive a sedimentary response model that accurately simulates observed proxy variation in three lake records. The model suggests that millennial variations in sediment composition reflect a self‐organization of landscapes in response to abrupt climate change between 11.6 and 11.9 ka BP. The self‐organization is characterized by oscillations in sediment supply emerging from a feedback between physical and chemical erosion processes, with estimated response times between 3,000 to 18,000 years depending on catchment topography. The implications of our findings emphasize the need for landscape response models to decipher the paleoclimatic code in continental sediment records

    Eliciting Dirichlet and Gaussian copula prior distributions for multinomial models

    Get PDF
    In this paper, we propose novel methods of quantifying expert opinion about prior distributions for multinomial models. Two different multivariate priors are elicited using median and quartile assessments of the multinomial probabilities. First, we start by eliciting a univariate beta distribution for the probability of each category. Then we elicit the hyperparameters of the Dirichlet distribution, as a tractable conjugate prior, from those of the univariate betas through various forms of reconciliation using least-squares techniques. However, a multivariate copula function will give a more flexible correlation structure between multinomial parameters if it is used as their multivariate prior distribution. So, second, we use beta marginal distributions to construct a Gaussian copula as a multivariate normal distribution function that binds these marginals and expresses the dependence structure between them. The proposed method elicits a positive-definite correlation matrix of this Gaussian copula. The two proposed methods are designed to be used through interactive graphical software written in Java

    Validation of the OECD reproduction test guideline with the New Zealand mudsnail Potamopyrgus antipodarum using trenbolone and prochloraz

    Get PDF
    The Organisation for Economic Cooperation and Development (OECD) provides several standard test methods for the environmental hazard assessment of chemicals, mainly based on primary producers, arthropods, and fish. In April 2016, two new test guidelines with two mollusc species representing different reproductive strategies were approved by OECD member countries. One test guideline describes a 28-day reproduction test with the parthenogenetic New Zealand mudsnail Potamopyrgus antipodarum. The main endpoint of the test is reproduction, reflected by the embryo number in the brood pouch per female. The development of a new OECD test guideline involves several phases including inter-laboratory validation studies to demonstrate the robustness of the proposed test design and the reproducibility of the test results. Therefore, a ring test of the reproduction test with P. antipodarum was conducted including eight laboratories with the test substances trenbolone and prochloraz and results are presented here. Most laboratories could meet test validity criteria, thus demonstrating the robustness of the proposed test protocol. Trenbolone did not have an effect on the reproduction of the snails at the tested concentration range (nominal: 10-1000 ng/L). For prochloraz, laboratories produced similar EC10 and NOEC values, showing the inter-laboratory reproducibility of results. The average EC10 and NOEC values for reproduction (with coefficient of variation) were 26.2 µg/L (61.7%) and 29.7 µg/L (32.9%), respectively. This ring test shows that the mudsnail reproduction test is a well-suited tool for use in the chronic aquatic hazard and risk assessment of chemicals

    How to integrate basin-scale information into reservoir models

    No full text
    Objectives and scope of the Study In this paper a new approach is presented to consistently integrate basin-scale information into reservoir models. The impact of the quantitative integration of boundary conditions derived from basin-scale modeling on the facies distribution at the reservoir scale is evaluated. To this purpose, a new workflow was defined based on a geostatistical approach. The aim was that of integrating the typical dataset for reservoir geological modeling, comprising well and seismic data, with a potentially new kind of data obtained from 3-D process-based stratigraphic modeling and related to the distribution of the hydrocarbon bearing volumes. Quantitative coherence between the small scale reservoir volume and the large-scale geological setting defined by the basin model was imposed. Synthetic case studies were set up to verify the effectiveness of the method. Applications The entire process was applied to a fluvio-deltaic environment to integrate the basin-derived information, such as (1) the overall reservoir/non reservoir volumes, (2) the 3D distribution of channelized volumes and (3) related flow directions, to the reservoir model. Eventually, the uncertainty reduction in the description of the final facies distribution at the reservoir scale was evaluated. Results, Observations and Conclusions The developed approach proved very efficient to estimate the lithological fraction of the hydrocarbon bearing rocks (i.e. sands in a shaley/clayey environment). The lithological fraction is of crucial importance during the appraisal phase of a reservoir when relevant decisions have to be taken but few wells are drilled and, as a consequence, a limited amount of data is available to perform a reliable volumetric estimate. Furthermore, the prediction of the 3D facies architecture (such as the channel pattern in a fluvial depositional environment) can effectively assist in the well planning strategy. Besides, the overall uncertainty affecting a reservoir model can be assessed; this uncertainty is both a function of the initial environmental parameters for basin modeling and of the adopted methodological approach for basin-to-reservoir data integration. Therefore, an accurate inference of the basin parameters is needed to achieve a reliable prediction of both the channel location and the sand/shales volumes fractions. Significance of subject matter Reservoir modeling can significantly benefit from the integration of quantitative basin-scale information. In particular, the numerical modeling of the stratigraphic sequence can be used to steer the reconstruction of the reservoir internal geometry and to reduce the uncertainty in the distribution of the hydrocarbon-bearing lithologies. Furthermore, this approach provides a rigorous assessment of the information content of all the available data and thus it might be very useful to guide further data acquisition campaigns
    corecore