767 research outputs found

    Temperature-extended Jarzynski relation: Application to the numerical calculation of the surface tension

    Full text link
    We consider a generalization of the Jarzynski relation to the case where the system interacts with a bath for which the temperature is not kept constant but can vary during the transformation. We suggest to use this relation as a replacement to the thermodynamic perturbation method or the Bennett method for the estimation of the order-order surface tension by Monte Carlo simulations. To demonstrate the feasibility of the method, we present some numerical data for the 3D Ising model

    The L1-Potts functional for robust jump-sparse reconstruction

    Full text link
    We investigate the non-smooth and non-convex L1L^1-Potts functional in discrete and continuous time. We show Γ\Gamma-convergence of discrete L1L^1-Potts functionals towards their continuous counterpart and obtain a convergence statement for the corresponding minimizers as the discretization gets finer. For the discrete L1L^1-Potts problem, we introduce an O(n2)O(n^2) time and O(n)O(n) space algorithm to compute an exact minimizer. We apply L1L^1-Potts minimization to the problem of recovering piecewise constant signals from noisy measurements f.f. It turns out that the L1L^1-Potts functional has a quite interesting blind deconvolution property. In fact, we show that mildly blurred jump-sparse signals are reconstructed by minimizing the L1L^1-Potts functional. Furthermore, for strongly blurred signals and known blurring operator, we derive an iterative reconstruction algorithm

    Diffusive Thermal Dynamics for the Ising Ferromagnet

    Full text link
    We introduce a thermal dynamics for the Ising ferromagnet where the energy variations occurring within the system exhibit a diffusive character typical of thermalizing agents such as e.g. localized excitations. Time evolution is provided by a walker hopping across the sites of the underlying lattice according to local probabilities depending on the usual Boltzmann weight at a given temperature. Despite the canonical hopping probabilities the walker drives the system to a stationary state which is not reducible to the canonical equilibrium state in a trivial way. The system still exhibits a magnetic phase transition occurring at a finite value of the temperature larger than the canonical one. The dependence of the model on the density of walkers realizing the dynamics is also discussed. Interestingly the differences between the stationary state and the Boltzmann equilibrium state decrease with increasing number of walkers.Comment: 9 pages, 14 figures. Accepted for publication on PR

    On the center of mass of Ising vectors

    Full text link
    We show that the center of mass of Ising vectors that obey some simple constraints, is again an Ising vector.Comment: 8 pages, 3 figures, LaTeX; Claims in connection with disordered systems have been withdrawn; More detailed description of the simulations; Inset added to figure

    Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction

    Full text link
    A general analysis of thermal noise in torsion pendulums is presented. The specific case where the torsion angle is kept fixed by electronic feedback is analyzed. This analysis is applied to a recent experiment that employed a torsion pendulum to measure the Casimir force. The ultimate limit to the distance at which the Casimir force can be measured to high accuracy is discussed, and in particular the prospects for measuring the thermal correction are elaborated upon.Comment: one figure, five pages, to be submitted to Phys Rev

    Dual Statistical Systems and Geometrical String

    Full text link
    We analyse statistical system with interface energy proportional to the length of the edges of interface. We have found the dual system high temperature expansion of which equally well generates surfaces with linear amplitude. These dual systems are in the same relation as 3D Ising ferromagnet to the 3D Gauge spin system.Comment: 8 pages, Late

    On the occurrence of oscillatory modulations in the power-law behavior of dynamic and kinetic processes in fractals

    Full text link
    The dynamic and kinetic behavior of processes occurring in fractals with spatial discrete scale invariance (DSI) is considered. Spatial DSI implies the existence of a fundamental scaling ratio (b_1). We address time-dependent physical processes, which as a consequence of the time evolution develop a characteristic length of the form ξt1/z\xi \propto t^{1/z}, where z is the dynamic exponent. So, we conjecture that the interplay between the physical process and the symmetry properties of the fractal leads to the occurrence of time DSI evidenced by soft log-periodic modulations of physical observables, with a fundamental time scaling ratio given by τ=b1z\tau = b_1 ^z. The conjecture is tested numerically for random walks, and representative systems of broad universality classes in the fields of irreversible and equilibrium critical phenomena.Comment: 6 pages, 3 figures. Submitted to EP

    Spin-spin interaction and spin-squeezing in an optical lattice

    Get PDF
    We show that by displacing two optical lattices with respect to each other, we may produce interactions similar to the ones describing ferro-magnetism in condensed matter physics. We also show that particularly simple choices of the interaction lead to spin-squeezing, which may be used to improve the sensitivity of atomic clocks. Spin-squeezing is generated even with partially, and randomly, filled lattices, and our proposal may be implemented with current technology.Comment: 4 pages, including 4 figure

    Spin-filter effect of the europium chalcogenides: An exactly solved many-body model

    Full text link
    A model Hamiltonian is introduced which considers the main features of the experimental spin filter situation as s-f interaction, planar geometry and the strong external electric field. The proposed many-body model can be solved analytically and exactly using Green functions. The spin polarization of the field-emitted electrons is expressed in terms of spin-flip probabilities, which on their part are put down to the exactly known dynamic quantities of the system. The calculated electron spin polarization shows remarkable dependencies on the electron velocity perpendicular to the emitting plane and the strength of s-f coupling. Experimentally observed polarization values of about 90% are well understood within the framework of the proposed model.Comment: accepted (Physical Review B); 10 pages, 11 figures; http://orion.physik.hu-berlin.de

    The unusual pulsation spectrum of the cool ZZ Ceti star HS 0507+0434B

    Full text link
    We present the analysis of one week of single-site high-speed CCD photometric observations of the cool ZZ Ceti star HS 0507+0434B. Ten independent frequencies are detected in the star's light variations: one singlet and three nearly-equally spaced triplets. We argue that these triplets are due to rotationally split modes of spherical degree l=1. This is the first detection of consistent multiplet structure in the amplitude spectrum of a cool ZZ Ceti star and it allows us to determine the star's rotation period: 1.70 +/- 0.11 d. We report exactly equal frequency, not period, spacings between the detected mode groups. In addition, certain pairs of modes from the four principal groups have frequency ratios which are very close to 3:4 or 4:5; while these ratios are nearly exact (within one part in 10^4), they still lie outside the computed error bars. We speculate that these relationships between different frequencies could be caused by resonances. One of the three triplets may not be constant in amplitude and/or frequency. We compare our frequency solution for the combination frequencies (of which we detected 38) to Wu's (1998, 2001) model thereof. We obtain consistent results when trying to infer the star's convective thermal time and the inclination angle of its rotational axis. Theoretical combination-frequency amplitude spectra also resemble those of the observations well, and direct theoretical predictions of the observed second-order light-curve distortions were also reasonably successful assuming the three triplets are due to l=1 modes. Attempts to reproduce the observed combination frequencies adopting all possible l=2 identifications for the triplets did not provide similarly consistent results, supporting their identification with l=1.Comment: Accepted for publication in MNRAS; 12 pages, 8 figure
    corecore