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Measurement-Based Teleportation along Quantum Spin Chains
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We examine the teleportation of an unknown spin-1=2 quantum state along a quantum spin chain with
an even number of sites. Our protocol, using a sequence of Bell measurements, may be viewed as an
iterated version of the 2-qubit protocol of C. H. Bennett et al. [Phys. Rev. Lett. 70, 1895 (1993)]. A
decomposition of the Hilbert space of the spin chain into 4 vector spaces, called Bell subspaces, is given. It
is established that any state from a Bell subspace may be used as a channel to perform unit fidelity
teleportation. The space of all spin-0 many-body states, which includes the ground states of many known
antiferromagnetic systems, belongs to a common Bell subspace. A channel-dependent teleportation
parameter O is introduced, and a bound on the teleportation fidelity is given in terms of O.
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FIG. 1. A schematic representation of the proposed teleporta-
tion protocol, showing input state jvi and final state Xjvi. (a) A
Bell-basis measurement over a single pair of maximally en-
tangled spins, as in Eq. (1), represented by a solid line between
two sites. (b) A schematic representation of our protocol for a
general spin quantum state, as in Eq. (2), with nontrivial entan-
glement, represented by the dashed line. Here we assume that the
state j ~j ~kg lies within a Bell subspace, yielding a pure output
state, Xjvi. X is known from the measurement outcome, as per
Table I.
Quantum many-body spin Hamiltonians often have en-
tangled ground states, and an understanding of entangle-
ment may in turn lead to a greater understanding of the
physics of many-body quantum systems with strong corre-
lations [1]. Although there exist several proposed measures
for multipartite entanglement [2– 4], there is no known
definitive measure which significantly aids this under-
standing. In this Letter, we instead characterize the entan-
glement of multipartite states by one of the manifest
properties of entanglement, the ability to perform telepor-
tation. This is investigated using a protocol involving
successive Bell measurements. Specifically, we construct
a teleportation parameter, which is a function of the chan-
nel state, that bounds the teleportation fidelity. We then
examine the ground states of several known quantum spin
chain Hamiltonians and establish that they provide chan-
nels capable of performing perfect fidelity teleportation,
for an arbitrary length of the chain.

Teleportation over a Bell state by Bell-basis measure-
ment is well understood[5]. We denote our two-
dimensional spin space as V, with basis j "i; j #i. Let vi; i �
1; 2; 3; 4 represent the standard Bell-basis states, where v0

is the singlet v0 � �j "ij #i � j #ij "i�=
���
2
p

. The other Bell
states, vi, may be written as vi � �I � Xi�v0, where X0 �
�I, X1 � �x, X2 � ��z, and X3 � i�y, and the � matri-
ces are the usual Pauli matrices for spin-1=2 particles.
These states are simultaneous eigenstates of �x � �x and
�z � �z. Let us introduce the notation jklg for Bell states
such that �x � �xjklg � kjklg, and �z � �zjklg � ljklg [6],
where k; l � �1.

The standard scheme for teleportation proceeds as fol-
lows [5]. Let Pjjkg denote the projections onto the state jjkg.
Given a target state which we wish to teleport, jvi, and a
two-particle Bell state jjkg over which we wish to teleport
jvi, we simply perform a Bell-basis measurement across
the target state, and half of the two-particle state, as in
Fig. 1(a). We can understand this result by making the
05=95(23)=230501(4)$23.00 23050
following decomposition:

jvi � jjkg �
1

2

X

p;q

jpqg � Xjkpqjvi; (1)

where Xjkpq is one of the matrices Xi, as in Table I. We can
identify Xjkpq with a unitary correction, which we must
invert to yield the target state jvi.

Multipartite channel teleportation.—We now wish to
find multipartite channels which are amenable to a tele-
portation protocol. We propose a scheme in which a series
of Bell measurements are made along a chain, followed
by some unitary operation on the last site, which will
be conditioned on the results of the Bell measurements.
We will consider channel states of an even number
L � 2L of spin-1=2 particles. We define the L-particle
state j ~j ~kg� jj1k1g� . . .�jjLkLg, where ~j��j1;j2; . . . ;jL�;
~k��k1;k2; . . . ;kL� are L-dimensional vectors. A funda-
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FIG. 2. Data points correspond to the fidelity of teleportation
for a range of target states and channels. The fidelity is shown
against the quantity O as defined in Eq. (6) for 2000 4-qubit
channels. The dashed line is a lower bound for these points and is
given by the inequality in Eq. (7). This clearly shows the
tendency F ! 1 as O! 3.

TABLE I. Unitary correction, Xjkpq, to be inverted on the final
qubit, where we start with a quantum state jvi � jjkg and project
onto jpqg with Pjpqg � jpqgfpqj � I. These correspond to either
no correction (X0), a bit flip (X1), a phase flip (X2), or both a bit
and a phase flip (X3).

jjkg
j��g j�
g j
�g j

g

Pjpqg

Pj��g �X0 �X1 �X2 �X3

Pj�
g X1 X0 �X3 �X2

Pj
�g X2 X3 X0 X1

Pj

g �X3 �X2 X1 X0
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mental result is that we can make the following decom-
position [7]

jvi � j ~j ~kg �
1

2L
X

~p; ~q

j ~p ~qg � XjLkLpLqL . . .Xj1k1
p1q1
jvi: (2)

Since the corrections are closed under composition, we

may write XjLkLpLqL . . .Xj1k1
p1q1
� X

~j ~k
~p ~q � �X

i for some i.
Physically, each component jpqg of the decomposition

corresponds to a history of Bell measurements, which gives
some unitary correction to the target state in the final site.
Thus we can understand our protocol as an iterated version
of the Bennett et al. scheme. However, the current work
represents a fundamental extension to general multipartite
channels.

It can be shown [7] that states j ~j ~kg are simultaneous
eigenstates of the following operators

O � � �
L
i�1�

�
i ; � � x; y; z (3)

with eigenvalues
Q
iji, ��1�L

Q
ijiki, and

Q
iki, respec-

tively. We can decompose the total L particle Hilbert space,
V�L, into four subspaces as

V�L � VL���� 	 V
L
��
� 	 V

L
�
�� 	 V

L
�

�; (4)

where VL�jk� is the subspace of eigenstates of Ox and Oz

with eigenvalues j and k, respectively.
We refer to the 4 subspaces as Bell subspaces since they

reduce to the Bell basis in the two-qubit case. For any state
within a given subspace VL

�kl�, due to the linearity of Eq. (2),
we find that we are able to perform unit fidelity teleporta-
tion with corrections which are in 1-1 correspondence with
the assignments given in Table I. It is vital to note that
because these subspaces exist, for L> 1 there are infi-
nitely many channel states which we may use to implement
this scheme. This is in stark contrast to the 2-qubit channel
case where there are only four perfect channels. Further
details can be found in a longer companion paper [7].

Fidelity.—Given a channel quantum state, j i, which we
believe to belong to the subspace VL

�pq�, we perform Bell-
basis measurements along the chain, and then apply the
appropriate correction to the last site. Let us decompose
23050
our channel state as

j i �
X

i;j��

ci;jj�i;ji; (5)

where j�i;ji are orthonormal vectors, each lying in sub-
spaces VL�ij�. The condition that j i lies within the subspace
VL�pq� implies ci;j � �i;p�j;q, which might only be approxi-
mately satisfied for real quantum states. Projecting onto the
Bell basis yields the measurement result j ~a ~bg with proba-
bility, p

j ~a ~bg. If the target quantum state is jvi, then the

resulting quantum state will be j ~a ~bg � jv0i where jv0
~a ~b
i /

P
i;j��ci;jX

ij

~a ~b
jvi is a superposition of different corrections

onto jvi. The fidelity for a particular state jvi is given by
F � jhv0

~a ~b
jXpqab jvij

2.
We now define a quantity which we will use to character-

ize the fidelity of such a teleportation scheme. We may use
such a property to assess the feasibility of a teleportation
scheme. For any quantum spin state j i, we define the
teleportation parameter as

O �
X

��x;y;z

jh jO�j ij; (6)

where O� is given by Eq. (3). We note that O is related to
nonlocal correlations in j i, bearing some similarity to a
string order parameter [8]. The minimum possible fidelity
given perfect Bell-basis measurements is a monotonically
increasing function of O [7], as seen in Fig. 2. Note that the
fidelity F is not uniquely defined by O, but is also depen-
dent on jvi and the measurement history.

It can be shown [7] that O � 4jcp;qj2 � 1, such that
when O is close to 3, we satisfy the condition ci;j ’
�i;p�j;q, with equality when O � 3. One can prove that
O can be used to give a lower bound on the fidelity of
1-2
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teleportation through j i, by the following inequality [7]:

F �
O� 1

2
: (7)

A crucial point is that the ability to perform long dis-
tance, high fidelity teleportation is encompassed in the
inequality Eq. (7). In order to assess the feasibility of a
specific implementation of this teleportation protocol, one
simply needs to ensure that O is appropriately close to 3.

Cluster state QC.—The protocol we have presented is
based purely upon measurement, classical communication,
and local unitary operations. These operations are suffi-
cient for universal quantum computation (QC) [9–11],
particularly as manifest in cluster state QC. Hence, char-
acterizing the ability of a system to perform high fidelity
teleportation is useful for the purposes of QC.

By inspection, the regular 2-site cluster state [10],
j##i 
 j#"i 
 j"#i � j""i does not lie in any of the Bell
subspaces, since it is a linear superposition of two Bell
states. However, we may rewrite this state as j#!i

j" i, where j!i � 1=

���
2
p
�j#i 
 j"i� and j i � 1=���

2
p
�j#i � j"i� are the usual eigenvectors of �x. This state

now resembles a Bell state in the z; x basis rather than the
z; z basis. More generally, it can be shown that the one-
dimensional L-qubit cluster states of Ref. [10] can be
mapped to the subspace VL

�

�
through a sequence of local

unitary transformations [7]. This may be expected, as our
scheme resembles cluster state methods in the use of local
measurement and feed forward. The main difference is in
the preparation. Cluster states require an initialization, in
which entanglement is provided by a series of controlled-
phase entangling gates, while in our scheme, we require a
state to lie in a Bell subspace.

Spin-1=2 models.—The decomposition of VL into 4
subspaces with different corrections turns out to be ex-
tremely useful in understanding systems which have
ground states lying entirely in one of these subspaces.
We present several model Hamiltonians for which this is
true. It is interesting to note that all of these ground states
are similar to spin liquid states[12], since every member of
VL
�kl� has every 1-qubit reduced density matrix equal to I=2

[7]. Hence, each site is also maximally entangled with the
rest of the chain. Any state in one of these subspaces has
maximum localizable entanglement[13] with respect to
Bell measurements.

A family of nearest- and next-nearest neighbor antifer-
romagnetic spin exchange Hamiltonians is parametrized
with �> 0 by

H �
XN

i�1

Ŝi:Ŝi
1 
 �Ŝi:Ŝi
2; (8)

for which � � 1=2 yields the Majumdar-Ghosh Hamil-
tonian [14]. The ground state of this Hamiltonian is simply
comprised of a tensor product of singlets, �N=2

k�1jv
0i, and
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one may use this to perform unit fidelity teleportation with
repeated Bell-basis measurements along the chain.
However, it is possible to show that the ground state of
Eq. (8) for any value of �> 0 lies within a Bell subspace,
including the specific case of � � 0, which corresponds to
the Heisenberg Hamiltonian.

More generally, it can be shown rigorously that any
quantum state with a total spin 0 lies within one of the
Bell subspaces, VL

�kl�, which we outline as follows. Given
�0 � v0 � . . . � v0, it is clear that �0 must have total spin
0. Further, any permutation of sites in �0 must also have
spin 0, and belong to the same subspace [15]. In fact, it is
possible to decompose every spin-0 state as a sum over
permutations of the sites of �0 [16]. This is known in the
chemistry literature as resonant valence bond theory [17].

It is interesting to note that for the antiferromag-
netic Ising Hamiltonian [18], there are two degenerate
product form ground states, j��i � j"# . . . #i and j�
i �
j#" . . . "i. The decomposition of these will have equal sup-
port in more than one Bell subspace:

j��i � �j 
 �g � j � �g� � . . . � �j 
 �g � j � �g�:

However, the superposition, j�0i � �j�
i � j��i�=
���
2
p

,
has support on only one Bell subspace. Further, j�0i has
only one ebit [19] of entanglement—yet even so, we can
use this state to perform unit fidelity teleportation over an
arbitrary distance.

Spin-1 models.—The Affleck-Kennedy-Lieb-Tasaki
(AKLT) model [20] can be related to the antiferromagnetic
Heisenberg model for spin 1, and is given by � � 1=3 in
the class of Hamiltonians

HAKLT �
XN

i�1

Ŝi:Ŝi
1 
 ��Ŝi:Ŝi
1�
2: (9)

We may decompose each spin-1 site, i, as two virtual
spin-1=2 sites, i; �i, and project onto the spin-1 subspace.
For an N site chain with spin-1=2 boundary conditions, we
may write the ground state of the AKLT model as [21]
j AKLTi � ��

N
k�1Ak �k�jIi where jIi � �Nk�0jI �kk
1i is a

product of singlets, and Ak �k projects the spins at sites k
and �k onto their symmetric subspace. The operation of
projecting out the singlet components leaves the state in
the Bell subspace which also contains the singlet quantum
states.

Verstraete et al. [21] show that the projection onto Bell
states in the i � �i space is achievable with only single
particle measurements. Hence, one can use only single
particle spin-1 measurement to teleport a spin-1=2 state
along an AKLT chain. Moreover, a linear spin-1 Heisen-
berg antiferromagnetic may exhibit spin-1=2 degrees of
freedom at the boundaries, as evidenced by both numerical
[22] and experimental results [23]. Coupling the target
state into the spin chain by a Bell-basis measurement
over the target state and the boundary spin-1=2 degrees
of freedom, the entire teleportation problem reduces to an
1-3
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initial Bell-basis measurement and single particle measure-
ments on spin-1 particles [see also Ref. [24] ].

Non-Bell-basis measurements.—Experimentally, it is
very difficult to perform Bell-basis measurements directly,
and we now consider teleportation using only single parti-
cle measurements. To affect a Bell-basis measurement, we
may use the fact that there is a similarity transformation
between Bell-basis projection operators and a product of
single particle projections, by using an entangling opera-
tion, U[25]. A Bell projector Pj may be written as Pj �
UyPj2

2 P
j1
1 U where j1 and j2 are functions of j set by the

unitary operator U, and Pjii are single site projectors.
Projections onto different sites commute, and hence, we
may decompose our Bell measurement protocol as an
application of entangling unitaries onto the whole quantum
state, followed by a complete set of single particle projec-
tive measurements.

Generalizations.—Generalization to higher spin is pos-
sible, where a generalized N-Bell state is given by

jABg �
XN�1

i�0

!Biji�i
 A�i;

where s � N�1
2 is the spin, ! �

��
�

p
N�1 is a primitive Nth

root of 1, and A;B 2 f�s; . . . ; sg and jiji are the usual two-
particle spin-s basis states. In analogy to the interpretation
of �x as a bit flip and �z as a phase flip, we define the
action of permutation and phase correction matrices to be:

Pjli � jl
 1i; Qjli � !ljli:

As in the case of spin-1=2 particles, the corrections Pi and
Qi for i � 1; 2; . . . ; N form a group, and we may perform
exactly the same procedure of generalized Bell-basis mea-
surement, followed by a cumulative correction at the end of
the procedure.

We have shown that by using a Bell-basis measurement
protocol, it is possible to decompose the Hilbert space of
many spin-1=2 particles into several Bell subspaces, which
may be understood as subspaces corresponding to distinct
corrections. Further, we have shown that if any quantum
state belongs to a Bell subspace, then we may perform unit
fidelity teleportation with it, using only measurements in
the Bell basis. We have presented a parameter whose
magnitude provides a lower bound on the fidelity of tele-
portation. We have presented several model Hamiltonians
for which the ground state is amenable to our teleportation
protocol. Some alternative measurement schemes have
been presented, including a scheme for a spin-1 system.
Finally, we note that we have only considered the ability to
teleport one spin quantum state to an arbitrary site
[26] within a spin chain. Thus, v0 and v0 � v0 both have
O � 3, despite having a different number of ebits. There
may be further insights to be gained into the entanglement
23050
content of a system by considering the ability to teleport
several spin states to arbitrary sites.
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