1,084 research outputs found
Multilevel Analysis of Oscillation Motions in Active Regions of the Sun
We present a new method that combines the results of an oscillation study
made in optical and radio observations. The optical spectral measurements in
photospheric and chromospheric lines of the line-of-sight velocity were carried
out at the Sayan Solar Observatory. The radio maps of the Sun were obtained
with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the
sunspots were analyzed to study the oscillation processes in the
chromosphere-corona transition region in the layer with magnetic field B=2000
G. A high level of instability of the oscillations in the optical and radio
data was found. We used a wavelet analysis for the spectra. The best
similarities of the spectra of oscillations obtained by the two methods were
detected in the three-minute oscillations inside the sunspot umbra for the
dates when the active regions were situated near the center of the solar disk.
A comparison of the wavelet spectra for optical and radio observations showed a
time delay of about 50 seconds of the radio results with respect to optical
ones. This implies a MHD wave traveling upward inside the umbral magnetic tube
of the sunspot. Besides three-minute and five-minute ones, oscillations with
longer periods (8 and 15 minutes) were detected in optical and radio records.Comment: 17 pages, 9 figures, accepted to Solar Physics (18 Jan 2011). The
final publication is available at http://www.springerlink.co
The Lyapunov exponent in the Sinai billiard in the small scatterer limit
We show that Lyapunov exponent for the Sinai billiard is with where
is the radius of the circular scatterer. We consider the disk-to-disk-map
of the standard configuration where the disks is centered inside a unit square.Comment: 15 pages LaTeX, 3 (useful) figures available from the autho
Multi-level Dynamical Systems: Connecting the Ruelle Response Theory and the Mori-Zwanzig Approach
In this paper we consider the problem of deriving approximate autonomous
dynamics for a number of variables of a dynamical system, which are weakly
coupled to the remaining variables. In a previous paper we have used the Ruelle
response theory on such a weakly coupled system to construct a surrogate
dynamics, such that the expectation value of any observable agrees, up to
second order in the coupling strength, to its expectation evaluated on the full
dynamics. We show here that such surrogate dynamics agree up to second order to
an expansion of the Mori-Zwanzig projected dynamics. This implies that the
parametrizations of unresolved processes suited for prediction and for the
representation of long term statistical properties are closely related, if one
takes into account, in addition to the widely adopted stochastic forcing, the
often neglected memory effects.Comment: 14 pages, 1 figur
Ultrasound-assisted cold pasteurization in liquid or SC-CO2
Various types of chemical and physical protocols are used, thermal treatment in particular, to increase the quality of bulk food products (for example, dates or some sort of nuts) and extend shelf life, and combinations of methods are frequently used to achieve the best results. However, the use of these processing methods is not always the best option to preserve the initial taste and appearance of food products. For instance, a product may lose its initial natural appearance and acquire different flavors due to chemical transformations that occur at certain temperatures or when the products are treated with chemicals. Non-thermal treatment methods are called “cold” pasteurization. This is a set of advanced techniques that are based on physical and chemical effects that do not result in the structural food-product transformations caused by heating. We have developed and tested a new technique for efficient food-product processing and cold pasteurization in an ultrasonic field under pressure in an atmosphere of supercritical or subcritical carbon dioxide. A laboratory-scale unit that was designed and built for this purpose has experimentally proven the feasibility of this process and demonstrated high efficiency in suppressing pathogenic flora
Joule Heating and Current-Induced Instabilities in Magnetic Nanocontacts
We consider the electrical current through a magnetic point contact in the
limit of a strong inelastic scattering of electrons. In this limit local Joule
heating of the contact region plays a decisive role in determining the
transport properties of the point contact. We show that if an applied constant
bias voltage exceeds a critical value, the stationary state of the system is
unstable, and that periodic, non-harmonic oscillations in time of both the
electrical current through the contact and the local temperature in the contact
region develop spontaneously. Our estimations show that the necessary
experimental conditions for observing such oscillations with characteristic
frequencies in the range Hz can easily be met. We also show a
possibility to manipulate upon the magnetization direction of a magnetic grain
coupled through a point contact to a bulk ferromagnetic by exciting the
above-mentioned thermal-electric oscillations.Comment: 9 pages, 6 figures, submitted to Physical Review
Fragmentation channels of relativistic Be nuclei in peripheral interactions
Nuclei of Li were accelerated at the JINR Nuclotron. After the
charge-exchange reaction involving these nuclei at an external target a second
Be beam of energy 1.23A GeV was formed. This beam was used to expose
photo-emulsion chambers. The mean free path for inelastic Be interactions
in emulsion =14.00.8 cm coincides within the errors with those
for Li and Li nuclei. More than 10% of the Be events are associated
with the peripheral interactions in which the total charge of the relativistic
fragments is equal to the charge of the Be and in which charged mesons are
not produced. An unusual ratio of the isotopes is revealed in the composition
of the doubly charged Be fragments: the number of He fragments is twice
as large as that of He fragments. In 50% of peripheral interactions, a
Be nucleus decays to two doubly charged fragments. The present paper gives
the channels of the Be fragmentation to charged fragments. In 50% of
events, the Be fragmentation proceeds only to charged fragments involving
no emission of neutrons. Of them, the He+He channel dominates, the
He+d+p and Li+pchannels constitute 10% each. Two events involving no
emission of neutrons are registered in the 3-body He+t+p and He+d+d
channels. The mean free path for the coherent dissociation of relativistic
Be nuclei to He+He is 71 m. The particular features of the
relativistic Be fragmentation in such peripheral interactions are explained
by the He+He 2-cluster structure of the Be nucleus.Comment: 10 pages, 3 figures, 3 tables, conference: Conference on Physics of
Fundamental Interactions, Moscow, Russia, 5-9 Dec 200
THE INFLUENCE OF MILK-CLOTTING ENZYMES ON THE FUNCTIONAL PROPERTIES OF PIZZA-CHEESES
The effect of the type and dose of milk-clotting enzymes (Chy-max® M based on recombinant camel chymosin, Fromase® TL based on Rhizomucor miehei protease) on the physicochemical, functional properties and shelf life of pizza-cheeses was studied. When using a low dose of milk-clotting enzymes (MCE) for milk coagulation (250–1100 IMCU per 100 kg of milk), cheeses were obtained with an increased moisture content (55–57%), excessive acidity (pH 4.8–4.9) and texture defects (incoherent, crumbly, with separation of free moisture). This is due to the formation of a weak curd, which releases moisture poorly during processing. The use of an increased dose of MCE makes it possible to obtain a denser curd, better releasing moisture. Cheese produced with a high dose of milk-clotting enzymes (2000–2800 IMCU per 100 kg of milk) had a lower moisture content (52–53%) and lower acidity (pH 5.0–5.1). The protein matrix is more hydrated in these cheeses, which ensures its better water holding capacity and a more homogeneous and cohesive texture. The use of an increased dose of MCE with a high total proteolytic activity (Fromase) gives undesirable consequences in the form of accelerated proteolysis of cheese mass proteins, rapid loss of functional properties of the cheese, and a decrease in the shelf life of cheese (less than 60 days). Cheese production using an increased dose of MCE with a low level of total proteolytic activity (Chy-max M) allows achieving a low level of proteolysis during cheese ripening and increasing its shelf life
- …