24 research outputs found
Computational Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors
In this paper, we survey five different computational modeling methods. For
comparison, we use the activation cycle of G-proteins that regulate cellular
signaling events downstream of G-protein-coupled receptors (GPCRs) as a driving
example. Starting from an existing Ordinary Differential Equations (ODEs)
model, we implement the G-protein cycle in the stochastic Pi-calculus using
SPiM, as Petri-nets using Cell Illustrator, in the Kappa Language using
Cellucidate, and in Bio-PEPA using the Bio-PEPA eclipse plug in. We also
provide a high-level notation to abstract away from communication primitives
that may be unfamiliar to the average biologist, and we show how to translate
high-level programs into stochastic Pi-calculus processes and chemical
reactions.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
β-Arrestin–mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection
Deleterious effects on the heart from chronic stimulation of β-adrenergic receptors (βARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby β-arrestins mediate β1AR signaling to the EGFR. This β-arrestin–dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein–coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via β-arrestin–mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family
β-Arrestin Mediates β1-Adrenergic Receptor-Epidermal Growth Factor Receptor Interaction and Downstream Signaling*
β1-Adrenergic receptor (β1AR) stimulation confers cardioprotection via β-arrestin-de pend ent transactivation of epidermal growth factor receptors (EGFRs), however, the precise mechanism for this salutary process is unknown. We tested the hypothesis that the β1AR and EGFR form a complex that differentially directs intracellular signaling pathways. β1AR stimulation and EGF ligand can each induce equivalent EGFR phos pho ryl a tion, internalization, and downstream activation of ERK1/2, but only EGF ligand causes translocation of activated ERK to the nucleus, whereas β1AR-stimulated/EGFR-transactivated ERK is restricted to the cytoplasm. β1AR and EGFR are shown to interact as a receptor complex both in cell culture and endogenously in human heart, an interaction that is selective and undergoes dynamic regulation by ligand stimulation. Although catecholamine stimulation mediates the retention of β1AR-EGFR interaction throughout receptor internalization, direct EGF ligand stimulation initiates the internalization of EGFR alone. Continued interaction of β1AR with EGFR following activation is dependent upon C-terminal tail GRK phos pho ryl a tion sites of the β1AR and recruitment of β-arrestin. These data reveal a new signaling paradigm in which β-arrestin is required for the maintenance of a β1AR-EGFR interaction that can direct cytosolic targeting of ERK in response to catecholamine stimulation