5,447 research outputs found
Conditions for Phase Equilibrium in Supernovae, Proto-Neutron and Neutron Stars
We investigate the qualitative properties of phase transitions in a general
way, if not the single particle numbers of the system but only some particular
charges like e.g. baryon number are conserved. In addition to globally
conserved charges we analyze the implications of locally conserved charge
fractions, like e.g. local electric charge neutrality or locally fixed proton
or lepton fractions. The conditions for phase equilibrium are derived and it is
shown, that the properties of the phase transition do not depend on the locally
conserved fractions. Finally, the general formalism is applied to the
liquid-gas phase transition and the hadron-quark phase transition for typical
astrophysical environments like in supernovae, proto-neutron or a neutron
stars. We demonstrate that the Maxwell construction known from
cold-deleptonized neutron star matter with two locally charge neutral phases
requires modifications and further assumptions concerning the applicability for
hot lepton-rich matter. All possible combinations of local and global
conservation laws are analyzed, and the physical meaningful cases are
identified. Several new kinds of mixed phases are presented, as e.g. a locally
charge neutral mixed phase in proto-neutron stars which will disappear during
the cooling and deleptonization of the proto-neutron star.Comment: 18 page
A new possible quark-hadron mixed phase in protoneutron stars
The phase transition from hadronic matter to quark matter at high density
might be a strong first order phase transition in presence of a large surface
tension between the two phases. While this implies a constant-pressure mixed
phase for cold and catalyzed matter this is not the case for the hot and lepton
rich matter formed in a protoneutron star. We show that it is possible to
obtain a mixed phase with non-constant pressure by considering the global
conservation of lepton number during the stage of neutrino trapping. In turn,
it allows for the appearance of a new kind of mixed phase as long as neutrinos
are trapped and its gradual disappearance during deleptonization. This new
mixed phase, being composed by two electric neutral phases, does not develop a
Coulomb lattice and it is formed only by spherical structures, drops and
bubbles, which can have macroscopic sizes. The disappearance of the mixed phase
at the end of deleptonization might lead to a delayed collapse of the star into
a more compact configuration containing a core of pure quark phase. In this
scenario, a significant emission of neutrinos and, possibly, gravitational
waves are expected.Comment: 4 pages, 4 figure
Light clusters in nuclear matter: Excluded volume versus quantum many-body approaches
The formation of clusters in nuclear matter is investigated, which occurs
e.g. in low energy heavy ion collisions or core-collapse supernovae. In
astrophysical applications, the excluded volume concept is commonly used for
the description of light clusters. Here we compare a phenomenological excluded
volume approach to two quantum many-body models, the quantum statistical model
and the generalized relativistic mean field model. All three models contain
bound states of nuclei with mass number A <= 4. It is explored to which extent
the complex medium effects can be mimicked by the simpler excluded volume
model, regarding the chemical composition and thermodynamic variables.
Furthermore, the role of heavy nuclei and excited states is investigated by use
of the excluded volume model. At temperatures of a few MeV the excluded volume
model gives a poor description of the medium effects on the light clusters, but
there the composition is actually dominated by heavy nuclei. At larger
temperatures there is a rather good agreement, whereas some smaller differences
and model dependencies remain.Comment: 12 pages, 6 figures, published version, minor change
Meiotic sex chromosome cohesion and autosomal synapsis are supported by Esco2.
In mitotic cells, establishment of sister chromatid cohesion requires acetylation of the cohesin subunit SMC3 (acSMC3) by ESCO1 and/or ESCO2. Meiotic cohesin plays additional but poorly understood roles in the formation of chromosome axial elements (AEs) and synaptonemal complexes. Here, we show that levels of ESCO2, acSMC3, and the pro-cohesion factor sororin increase on meiotic chromosomes as homologs synapse. These proteins are less abundant on the largely unsynapsed sex chromosomes, whose sister chromatid cohesion appears weaker throughout the meiotic prophase. Using three distinct conditional Esco2 knockout mouse strains, we demonstrate that ESCO2 is essential for male gametogenesis. Partial depletion of ESCO2 in prophase I spermatocytes delays chromosome synapsis and further weakens cohesion along sex chromosomes, which show extensive separation of AEs into single chromatids. Unsynapsed regions of autosomes are associated with the sex chromatin and also display split AEs. This study provides the first evidence for a specific role of ESCO2 in mammalian meiosis, identifies a particular ESCO2 dependence of sex chromosome cohesion and suggests support of autosomal synapsis by acSMC3-stabilized cohesion
The Star Cluster Population in the Tidal Tails of NGC 6872
We present a photometric analysis of the rich star cluster population in the
tidal tails of NGC 6872. We find star clusters with ages between 1 - 100 Myr
distributed in the tidal tails, while the tails themselves have an age of less
than 150 Myr. Most of the young massive ()
clusters are found in the outer regions of the galactic disk or the tidal
tails. The mass distribution of the cluster population can be well described by
power-law of the form , where , in very good agreement with other young cluster populations found in a
variety of different environments. We estimate the star formation rate for
three separate regions of the galaxy, and find that the eastern tail is forming
stars at times the rate of the western tail and times the
rate of the main body of the galaxy. By comparing our observations with
published N-body models of the fate of material in tidal tails in a galaxy
cluster potential, we see that many of these young clusters will be lost into
the intergalactic medium. We speculate that this mechanism may also be at work
in larger galaxy clusters such as Fornax, and suggest that the so-called
ultra-compact dwarf galaxies could be the most massive star clusters that have
formed in the tidal tails of an ancient galactic merger.Comment: 12 pages, 10 figures, accepted A&
- …