442 research outputs found
Strong and weak coupling limits in optics of quantum well excitons
A transition between the strong (coherent) and weak (incoherent) coupling
limits of resonant interaction between quantum well (QW) excitons and bulk
photons is analyzed and quantified as a function of the incoherent damping rate
caused by exciton-phonon and exciton-exciton scattering. For confined QW
polaritons, a second, anomalous, damping-induced dispersion branch arises and
develops with increasing damping. In this case, the strong-weak coupling
transition is attributed to a critical damping rate, when the intersection of
the normal and damping-induced dispersion branches occurs. For the radiative
states of QW excitons, i.e., for radiative QW polaritons, the transition is
described as a qualitative change of the photoluminescence spectrum at grazing
angles along the QW structure. Furthermore, we show that the radiative
corrections to the QW exciton states with in-plane wavevector approaching the
photon cone are universally scaled by an energy parameter rather than diverge.
The strong-weak coupling transition rates are also proportional to the same
energy parameter. The numerical evaluations are given for a GaAs single quantum
well with realistic parameters.Comment: Published in Physical Review B. 29 pages, 12 figure
The emergence of a field: a network analysis of research on peer review
This article provides a quantitative analysis of peer review as an emerging field of research by revealing patterns and connections between authors, fields and journals from 1950 to 2016. By collecting all available sources from Web of Science, we built a dataset that included approximately 23,000 indexed records and reconstructed collaboration and citation networks over time. This allowed us to trace the emergence and evolution of this field of research by identifying relevant authors, publications and journals and revealing important development stages. Results showed that while the term âpeer reviewâ itself was relatively unknown before 1970 (ârefereeâ was more frequently used), publications on peer review significantly grew especially after 1990. We found that the field was marked by three development stages: (1) before 1982, in which most influential studies were made by social scientists; (2) from 1983 to 2002, in which research was dominated by biomedical journals, and (3) from 2003 to 2016, in which specialised journals on science studies, such as Scientometrics, gained momentum frequently publishing research on peer review and so becoming the most influential outlets. The evolution of citation networks revealed a body of 47 publications that form the main path of the field, i.e., cited sources in all the most influential publications. They could be viewed as the main corpus of knowledge for any newcomer in the fiel
A Discrete and Bounded Envy-free Cake Cutting Protocol for Four Agents
We consider the well-studied cake cutting problem in which the goal is to
identify a fair allocation based on a minimal number of queries from the
agents. The problem has attracted considerable attention within various
branches of computer science, mathematics, and economics. Although, the elegant
Selfridge-Conway envy-free protocol for three agents has been known since 1960,
it has been a major open problem for the last fifty years to obtain a bounded
envy-free protocol for more than three agents. We propose a discrete and
bounded envy-free protocol for four agents
Reexamination of Quantum Bit Commitment: the Possible and the Impossible
Bit commitment protocols whose security is based on the laws of quantum
mechanics alone are generally held to be impossible. In this paper we give a
strengthened and explicit proof of this result. We extend its scope to a much
larger variety of protocols, which may have an arbitrary number of rounds, in
which both classical and quantum information is exchanged, and which may
include aborts and resets. Moreover, we do not consider the receiver to be
bound to a fixed "honest" strategy, so that "anonymous state protocols", which
were recently suggested as a possible way to beat the known no-go results are
also covered. We show that any concealing protocol allows the sender to find a
cheating strategy, which is universal in the sense that it works against any
strategy of the receiver. Moreover, if the concealing property holds only
approximately, the cheat goes undetected with a high probability, which we
explicitly estimate. The proof uses an explicit formalization of general two
party protocols, which is applicable to more general situations, and a new
estimate about the continuity of the Stinespring dilation of a general quantum
channel. The result also provides a natural characterization of protocols that
fall outside the standard setting of unlimited available technology, and thus
may allow secure bit commitment. We present a new such protocol whose security,
perhaps surprisingly, relies on decoherence in the receiver's lab.Comment: v1: 26 pages, 4 eps figures. v2: 31 pages, 5 eps figures; replaced
with published version; title changed to comply with puzzling Phys. Rev.
regulations; impossibility proof extended to protocols with infinitely many
rounds or a continuous communication tree; security proof of decoherence
monster protocol expanded; presentation clarifie
Surface Screening in the Casimir Force
We calculate the corrections to the Casimir force between two metals due to
the spatial dispersion of their response functions. We employ model-independent
expressions for the force in terms of the optical coefficients. We express the
non-local corrections to the Fresnel coefficients employing the surface
parameter, which accounts for the distribution of the surface
screening charge. Within a self-consistent jellium calculation, spatial
dispersion increases the Casimir force significatively for small separations.
The nonlocal correction has the opposite sign than previously predicted
employing hydrodynamic models and assuming abruptly terminated surfaces.Comment: 5 pages, 2 figure
Correction to the Casimir force due to the anomalous skin effect
The surface impedance approach is discussed in connection with the precise
calculation of the Casimir force between metallic plates. It allows to take
into account the nonlocal connection between the current density and electric
field inside of metals. In general, a material has to be described by two
impedances and corresponding to two
different polarization states. In contrast with the approximate Leontovich
impedance they depend not only on frequency but also on the wave
vector along the plate . In this paper only the nonlocal effects happening
at frequencies (plasma frequency) are analyzed. We refer to
all of them as the anomalous skin effect. The impedances are calculated for the
propagating and evanescent fields in the Boltzmann approximation. It is found
that significantly deviates from the local impedance as a result of the
Thomas-Fermi screening. The nonlocal correction to the Casimir force is
calculated at zero temperature. This correction is small but observable at
small separations between bodies. The same theory can be used to find more
significant nonlocal contribution at due to the plasmon
excitation.Comment: 29 pages. To appear in Phys. Rev.
Parametric localized modes in quadratic nonlinear photonic structures
We analyze two-color spatially localized modes formed by parametrically
coupled fundamental and second-harmonic fields excited at quadratic (or chi-2)
nonlinear interfaces embedded into a linear layered structure --- a
quasi-one-dimensional quadratic nonlinear photonic crystal. For a periodic
lattice of nonlinear interfaces, we derive an effective discrete model for the
amplitudes of the fundamental and second-harmonic waves at the interfaces (the
so-called discrete chi-2 equations), and find, numerically and analytically,
the spatially localized solutions --- discrete gap solitons. For a single
nonlinear interface in a linear superlattice, we study the properties of
two-color localized modes, and describe both similarities and differences with
quadratic solitons in homogeneous media.Comment: 9 pages, 8 figure
- âŠ