15,944 research outputs found

    Magnetoelastic coupling in RETiO3 (RE = La, Nd, Sm, Gd, Y)

    Full text link
    A detailed analysis of the crystal structure in RETiO3 with RE = La, Nd, Sm, Gd, and Y reveals an intrinsic coupling between orbital degrees of freedom and the lattice which cannot be fully attributed to the structural deformation arising from bond-length mismatch. The TiO6 octahedra in this series are all irregular with the shape of the distortion depending on the RE ionic radius. These octahedron distortions vary more strongly with temperature than the tilt and rotation angles. Around the Ti magnetic ordering all compounds exhibit strong anomalies in the thermal-expansion coefficients, these anomalies exhibit opposite signs for the antiferromagnetic and ferromagnetic compounds. Furthermore the strongest effects are observed in the materials close to the magnetic cross-over from antiferromagnetic to ferromagnetic order

    Effect of Transition Magnetic Moments on Collective Supernova Neutrino Oscillations

    Full text link
    We study the effect of Majorana transition magnetic moments on the flavor evolution of neutrinos and antineutrinos inside the core of Type-II supernova explosions. We find non-trivial collective oscillation effects relating neutrinos and antineutrinos of different flavors, even if one restricts the discussion to Majorana transition electromagnetic moment values that are not much larger than those expected from standard model interactions and nonzero neutrino Majorana masses. This appears to be, to the best of our knowledge, the only potentially observable phenomenon sensitive to such small values of Majorana transition magnetic moments. We briefly comment on the effect of Dirac transition magnetic moments and on the consequences of our results for future observations of the flux of neutrinos of different flavors from a nearby supernova explosion.Comment: 11 pages,appendix added, version accepted in JCA

    Deforming the Maxwell-Sim Algebra

    Get PDF
    The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in which the momentum generators no longer commute, but satisfy [Pμ,Pν]=Zμν[P_\mu,P_\nu]=Z_{\mu\nu}. The charges ZμνZ_{\mu\nu} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra of Very Special Relativity. It admits an analogous non-central extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb_b, where bb is a non-trivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde

    Highly Dispersive Spin Excitations in the Chain Cuprate Li2CuO2

    Full text link
    We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large ferromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Ne'el temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.Comment: 6 pages, 4 figures, submitted to Europhys. Let

    On higher congruences between cusp forms and Eisenstein series

    Full text link
    In this paper we present several finite families of congruences between cusp forms and Eisenstein series of higher weights at powers of prime ideals. We formulate a conjecture which describes properties of the prime ideals and their relation to the weights. We check the validity of the conjecture on several numerical examples.Comment: 20 page

    Heat kernel estimates and spectral properties of a pseudorelativistic operator with magnetic field

    Full text link
    Based on the Mehler heat kernel of the Schroedinger operator for a free electron in a constant magnetic field an estimate for the kernel of E_A is derived, where E_A represents the kinetic energy of a Dirac electron within the pseudorelativistic no-pair Brown-Ravenhall model. This estimate is used to provide the bottom of the essential spectrum for the two-particle Brown-Ravenhall operator, describing the motion of the electrons in a central Coulomb field and a constant magnetic field, if the central charge is restricted to Z below or equal 86

    The Escape Problem in a Classical Field Theory With Two Coupled Fields

    Full text link
    We introduce and analyze a system of two coupled partial differential equations with external noise. The equations are constructed to model transitions of monovalent metallic nanowires with non-axisymmetric intermediate or end states, but also have more general applicability. They provide a rare example of a system for which an exact solution of nonuniform stationary states can be found. We find a transition in activation behavior as the interval length on which the fields are defined is varied. We discuss several applications to physical problems.Comment: 24 page

    Stellar turbulence and mode physics

    Full text link
    An overview of selected topical problems on modelling oscillation properties in solar-like stars is presented. High-quality oscillation data from both space-borne intensity observations and ground-based spectroscopic measurements provide first tests of the still-ill-understood, superficial layers in distant stars. Emphasis will be given to modelling the pulsation dynamics of the stellar surface layers, the stochastic excitation processes and the associated dynamics of the turbulent fluxes of heat and momentum.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini, M. P. Di Mauro, Astrophys. Space Sci., in the pres

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    The Classification of Obsessive–Compulsive and Related Disorders in the ICD-11

    Get PDF
    Background To present the rationale for the new Obsessive–Compulsive and Related Disorders (OCRD) grouping in the Mental and Behavioural Disorders chapter of the Eleventh Revision of the World Health Organization’s International Classification of Diseases and Related Health Problems (ICD-11), including the conceptualization and essential features of disorders in this grouping. Methods Review of the recommendations of the ICD-11 Working Group on the Classification for OCRD. These sought to maximize clinical utility, global applicability, and scientific validity. Results The rationale for the grouping is based on common clinical features of included disorders including repetitive unwanted thoughts and associated behaviours, and is supported by emerging evidence from imaging, neurochemical, and genetic studies. The proposed grouping includes obsessive–compulsive disorder, body dysmorphic disorder, hypochondriasis, olfactory reference disorder, and hoarding disorder. Body-focused repetitive behaviour disorders, including trichotillomania and excoriation disorder are also included. Tourette disorder, a neurological disorder in ICD-11, and personality disorder with anankastic features, a personality disorder in ICD-11, are recommended for cross-referencing. Limitations Alternative nosological conceptualizations have been described in the literature and have some merit and empirical basis. Further work is needed to determine whether the proposed ICD-11 OCRD grouping and diagnostic guidelines are mostly likely to achieve the goals of maximizing clinical utility and global applicability. Conclusion It is anticipated that creation of an OCRD grouping will contribute to accurate identification and appropriate treatment of affected patients as well as research efforts aimed at improving our understanding of the prevalence, assessment, and management of its constituent disorders
    corecore