12,690 research outputs found

    Quark Number Susceptibility in Hard Thermal Loop Approximation

    Get PDF
    We calculate the quark number susceptibility in the deconfined phase of QCD using the hard thermal loop (HTL) approximation for the quark propagator. This improved perturbation theory takes into account important medium effects such as thermal quark masses and Landau damping in the quark-gluon plasma. We explicitly show that the Landau damping part in the quark propagator for spacelike quark momenta does not contribute to the quark number susceptibility due to the quark number conservation. We find that the quark number susceptibility only due to the collective quark modes deviates from that of free one around the critical temperature but approaches free results at infinite temperature limit. The results are in conformity with recent lattice calculations.Comment: 9 pages including four figures and this version is accepted for publication in Euro. Phys. J.

    Recognition of two distinct elements in the RNA substrate by the RNA-binding domain of the T. thermophilus DEAD box helicase Hera

    Get PDF
    DEAD box helicases catalyze the ATP-dependent destabilization of RNA duplexes. Whereas duplex separation is mediated by the helicase core shared by all members of the family, flanking domains often contribute to binding of the RNA substrate. The Thermus thermophilus DEAD-box helicase Hera (for “heat-resistant RNA-binding ATPase”) contains a C-terminal RNA-binding domain (RBD). We have analyzed RNA binding to the Hera RBD by a combination of mutational analyses, nuclear magnetic resonance and X-ray crystallography, and identify residues on helix α1 and the C-terminus as the main determinants for high-affinity RNA binding. A crystal structure of the RBD in complex with a single-stranded RNA resolves the RNA–protein interactions in the RBD core region around helix α1. Differences in RNA binding to the Hera RBD and to the structurally similar RBD of the Bacillus subtilis DEAD box helicase YxiN illustrate the versatility of RNA recognition motifs as RNA-binding platforms. Comparison of chemical shift perturbation patterns elicited by different RNAs, and the effect of sequence changes in the RNA on binding and unwinding show that the RBD binds a single-stranded RNA region at the core and simultaneously contacts double-stranded RNA through its C-terminal tail. The helicase core then unwinds an adjacent RNA duplex. Overall, the mode of RNA binding by Hera is consistent with a possible function as a general RNA chaperone

    Gluon Condensate and Non-Perturbative Quark-Photon Vertex

    Get PDF
    We evaluate the quark-photon vertex non-perturbatively taking into account the gluon condensate at finite temperature. This vertex is related to the previously derived effective quark propagator by a QED like Ward-Takahashi identity. The importance of the effective vertex for the dilepton production rate from a quark-gluon plasma is stressed.Comment: 9 pages including two figure

    Bid participates in genotoxic drug-induced apoptosis of HeLa cells and is essential for death receptor ligands' apoptotic and synergistic effects

    Get PDF
    Background: The BH3-only protein Bid is an important component of death receptor-mediated caspase activation. Bid is cleaved by caspase-8 or -10 into t-Bid, which translocates to mitochondria and triggers the release of caspase-activating factors. Bid has also been reported to be cleaved by other proteases. Methodology/Principal Findings: To test the hypothesis that Bid is a central mediator of stress-induced apoptosis, we investigated the effects of a small molecule Bid inhibitor on stress-induced apoptosis, and generated HeLa cells deficient for Bid. Stable knockdown of bid lead to a pronounced resistance to Fas/CD95- and TRAIL-induced caspase activation and apoptosis, and significantly increased clonogenic survival. While Bid-deficient cells were equally sensitive to ER stress-induced apoptosis, they showed moderate, but significantly reduced levels of apoptosis, as well as increased clonogenic survival in response to the genotoxic drugs Etoposide, Oxaliplatin, and Doxorubicin. Similar effects were observed using the Bid inhibitor BI6C9. Interestingly, Bid-deficient cells were dramatically protected from apoptosis when subtoxic concentrations of ER stressors, Etoposide or Oxaliplatin were combined with subtoxic TRAIL concentrations. Conclusions/Significance: Our data demonstrate that Bid is central for death receptor-induced cell death and participates in anti-cancer drug-induced apoptosis in human cervical cancer HeLa cells. They also show that the synergistic effects of TRAIL in combination with either ER stressors or genotoxic anti-cancer drugs are nearly exclusively mediated via an increased activation of Bid-induced apoptosis signalling

    Avoiding errors in progressive tetrahedralizations

    Get PDF

    Global existence for the spherically symmetric Einstein-Vlasov system with outgoing matter

    Get PDF
    We prove a new global existence result for the asymptotically flat, spherically symmetric Einstein-Vlasov system which describes in the framework of general relativity an ensemble of particles which interact by gravity. The data are such that initially all the particles are moving radially outward and that this property can be bootstrapped. The resulting non-vacuum spacetime is future geodesically complete.Comment: 16 page

    Low Mass Dilepton Rate from the Deconfined Phase

    Full text link
    We discuss low mass dilepton rates (1\le 1 GeV) from the deconfined phase of QCD using both perturbative and non-perturbative models and compare with those from lattice gauge theory and in-medium hadron gas. Our analysis suggests that the rate at very low invariant mass (M200 M\le 200 MeV) using the nonperturbative gluon condensate in a semiempirical way within the Green function dominates over the Born-rate and independent of any uncertainty associated with the choice of the strong coupling in perturbation theory. On the other hand the rate from ρq\rho-q interaction in the deconfined phase is important between 200 MeV M1GeVasitisalmostofsameorderoftheBornrateaswellasinmediumhadrongasrate.Alsothehigherorderperturbativerate,leavingasideitsvariousuncertainties,fromHTLapproximationbecomesreliableat\le M \le 1 GeV as it is almost of same order of the Born-rate as well as in-medium hadron gas rate. Also the higher order perturbative rate, leaving aside its various uncertainties, from HTL approximation becomes reliable at M\ge 200MeVandalsobecomescomparablewiththeBornrateandthelatticeratefor MeV and also becomes comparable with the Born-rate and the lattice-rate for M\ge 500$ MeV, constraining on the broad resonance structures in the dilepton rate at large invariant mass. We also discuss the lattice constraints on the low mass dilepton rate. Furthermore, we discuss a more realistic way to advocate the quark-hadron duality hypothesis based on the dilepton rates from QGP and hadron gas than it is done in the literature.Comment: 24 pages, 9 figures; Discussion added, Accepted in Phys. Rev.

    Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory

    Full text link
    Considering recently developed Hard Thermal Loop perturbation theory that takes into account the effect of the variation of the external field through the fluctuations of a conserved quantity we calculate the temporal component of the Euclidian correlation function in the vector channel. The results are found to be in good agreement with the very recent results obtained within the quenched approximation of QCD and small values of the quark mass (0.1T\sim 0.1T) on improved lattices of size 1283×Nτ128^3\times N_\tau at (Nτ=40, T=1.2TCN_\tau=40, \ T=1.2T_C), (Nτ=48, T=1.45TCN_\tau=48, \ T=1.45T_C), and (Nτ=16, T=2.98TCN_\tau=16, \ T=2.98T_C), where NτN_\tau is the temporal extent of the lattice. This suggests that the results from lattice QCD and Hard Thermal Loop perturbation theory are in close proximity for a quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified; Accepted in Phys. Rev.
    corecore