
Research Collection

Report

Avoiding errors in progressive tetrahedralizations

Author(s):
Staadt, Oliver G.; Gross, Markus H.

Publication Date:
1998

Permanent Link:
https://doi.org/10.3929/ethz-a-006652258

Rights / License:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection. For more
information please consult the Terms of use.

ETH Library

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository for Publications and Research Data

https://core.ac.uk/display/304140982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.3929/ethz-a-006652258
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Swiss Federal Institute of Technology Zurich
Politecnico federale di Zurigo
Ecole polytechnique federale de Zurich´ ´

Zurich¨
Technische Hochschule
Eidgenossische¨

Institute of Scientific Computing Computer Graphics Research Group

Avoiding Errors In
Progressive Tetrahedralizations

Oliver. G. Staadt, Markus. H. Gross

Computer Graphics Research Group
Institute of Scientific Computing
Computer Science Department

ETH Zürich, Switzerland
E-mail: {staadt, markus.gross}@inf.ethz.ch

WWW: http://www.inf.ethz.ch/department/IS/cg

T
ec

hn
ic

al
 R

ep
or

t N
o.

 2
87

, J
an

ua
ry

 1
99

8

1

Avoiding Errors In Progressive Tetrahedralizations

Oliver G. Staadt, Markus H. Gross

ETH Zurich

ABSTRACT
This paper describes some fundamental issues for robust imple-
mentations of progressively refined tetrahedralizations generated
through sequences of edge collapses. We address the definition of
appropriate cost functions and explain on various tests which are
necessary to preserve the consistency of the mesh when collapsing
edges. Although being considered a special case of progressive
simplicial complexes [4], the results of our method are of high
practical importance and can be used in many different applica-
tions, such as finite element meshing, scattered data interpolation
or rendering of irregular volume data.

CR Categories: I.3.5 [Computer Graphics]: Computational Geo-
metry and Object Modeling – surfaces and object representations.

Keywords: mesh simplification, multiresolution, FEM meshing.

1 INTRODUCTION
Progressive meshes [3] and its generalizations to higher dimen-
sions [4] have proofed to be an extremely powerful notion for the
efficient representation of triangulated geometric objects at differ-
ent levels of detail. Although a general formulation for arbitrary
triangulations has already been given in [4], the special case of
progressive tetrahedralizations (PT) is of enormous practical
importance, since it can be used as a sophisticated representation
for a large variety of computations. Finite Element discretizations,
from where our contribution was motivated, are one example.
Here, sophisticated computational methods try to find an optimal
balance between refinements of the mesh and of the polynomial
degree of the basis functions. Other important applications of pro-
gressive tetrahedralizations comprise interpolation and rendering
of scattered volume data, where successively refinable methods
would definitely improve the performance of existing approaches.
A general overview of various mesh simplification methods,
including those based on edge collapses, can be found in [2].

However, regardless of the brilliance and simplicity of the idea
of edge collapsing, a brute force implementation of the method
may rapidly destroy the consistency of the mesh. Various artifacts
can be introduced, such as flipped, intersected and degenerated tet-
rahedra, which in turn may kill any Finite Element computation.
An example is given in Fig. 1. Here two boundary tetrahedra inter-
sect due to an edge collapse in a locally concave mesh region.

In this paper we elaborate on some pitfalls and fallacies people
might get caught in when trying to implement the method of edge
collapsing for tetrahedral meshes. Specifically, we address the
issue of defining appropriate cost functions. Unlike the elegant
geometric approach presented in [3], we must account for volume
and application specific properties, such as volume preservation,
gradient estimation of the underlying data or aspect ratio of the
simplex. In addition, we devised a sequence of tests to guarantee a
robust and consistent progressive tetrahedralization. Some results
obtained on CFD data sets illustrate the performance of the PT1.

2 PROGRESSIVE TETRAHEDRALIZATI-
ONS

For reasons of readability, we recapitulate some basic definitions
for progressive meshes and adapt them to progressive tetrahedrali-
zations (PT). General introductions are provided in [3] or [4].

Background In PT representations, a tetrahedral mesh with
scalar attributes assigned to each vertex is defined as

(1)

where is some coarse base mesh and are vertex split
operations to reconstruct the original mesh from :

. (2)

Conversely, is derived from through a series of edge
collapse operations which are inverse to :

. (3)

Each replaces an edge with vertices and by a
new vertex . As opposed to some other methods we preserve the
topological type of the mesh, that is, all instances of are homeo-
morphic. Specifically, we prohibit degenerations of tetrahedra into
lower dimensional simplices. The set of tetrahedra sharing will
be called . Thus, an edge split adds the tetrahedra in

 to the list of active elements. Conversely, the set of non-
vanishing tetrahedra affected by the associated edge collapse is
called . Fig. 2 depicts an edge collapse operation in a
tetrahedral mesh. All tetrahedra sharing vanish, whereas all tet-
rahedra sharing only one of the vertices of the edge change in
shape.

In order to compute a sequence of robust, non-degenerate and
consistent meshes, the following aspects have to be considered:

• Cost functions which determine the order of ecol opera-
tions depending on desired mesh optimization criteria.

• Sharp and feature edges which should be preserved can
be checked during preprocessing.

• Intersections and inversions of tetrahedra inside and out-
side of , such as the one in Fig.
1, have to be processed at run time.

The remainder of this paper elaborates on the details of these
issues.

Cost Functions Various elegant algorithms [1][3] based on
the ecol/vsplit paradigm used cost functions optimized for triangu-
lar surfaces, often accounting for distance measures, triangle shape

1 The method is currently implemented as a set of AVS/Express
modules and will be made available shortly.

Figure 1: Intersection of two tetrahedra: a) The edges of two
non-adjacent tetrahedra bounding the volume intersect while col-
lapsing an edge in a locally concave mesh region. b) Close-up of
the intersection.

collapsing edge

a) b)

si vi

M0 vsplit0 vsplit1 … vsplitn 2– vsplitn 1–, , , , ,()

M0 vspliti
M Mn= M0

M
0 vsplit0 M

1 vsplit1 … vsplitn 1– M
n

M0 M
ecoli vspliti

M
n ecoln 1– M

n 1– ecoln 2– … ecol0 M
0

ecoli ei va vb
va

M

ei
icellsi{ }

icellsi{ }

ncellsi{ }
ei

icellsi{ } ncellsi{ }∪{ }

2

and others. In tetrahedral meshes, however, we have to redefine the
terms of the cost function considering other features, like volume
preservation or gradients. Although many different measures are
conveivable to control the simplification process, the following
ones yield a good balance between required degrees of freedom
and the pain of parameter optimization.

Thus, in our setting, for each edge , the associ-

ated edge collapse operation is assigned

the following cost:

. (4)

The first term is defined as

(5)

and forms a simplified measure for the difference of underlying
scalar volume function along the edge . Hence, edges with con-
siderably differing scalar attributes are assigned high costs.

When collapsing edges and removing tetrahedra from the
mesh, the overall volume tends to decrease, that is the mesh
shrinks down. Therefore, we introduce a second term
penalizing volume changes:

. (6)

 denote all tetrahedra in the set of neighborhood cells
 of and introduced cells , respectively.

 stands for the volume of and is the tetrahedron
after the collapse. Note that only simplices in

 can contribute to volume changes.
Especially in FEM applications, it is often required that tetra-

hedra sustain equilateral shape. can be employed in order
to balance the edge length of tetrahedra:

(7)

with edge length and average edge length
.

Each term can be weighted individually by a coefficient to
allow adoption to specific data sets and applications.

Note that the initial mesh will usually be generated from some
triangulation scheme. Depending on the application context and
the desired mesh features it can be advantageous to include some

 into the cost function thereby
enforcing short edges to be collapsed earlier. This term, however,
is omitted in subsequent examples.

Static Tests Unfortunately, brute force selection of edges
according to the cost function from above can introduce mesh
inconsistencies, like degeneration, folding, intersection, or loss of
individual features.

In order to avoid these types of artifacts, some static tests can
be carried out prior to building the edge heap. Before we introduce
the test criteria we have to define some properties of edges and ver-
tices:

• sharp edge: an edge is called sharp if it lies on the
boundary of the mesh.

• sharp vertex: a vertex is called sharp if at least one
edge incident to is sharp.

• sharp face: a triangular cell face is called sharp if all
its edges are sharp.

• sharp cell: a tetrahedral cell is sharp if at least one of
its faces is sharp.

Sharp edges can be detected efficiently by analyzing all verti-
ces assuming appropriate data structures to repre-
sent the mesh. In a preprocessing step we label all sharp vertices
and edges, respectively. Table 1 lists the 5 different cases for com-
binations of sharp edges and vertices. Only cases 1 and 5 pass the
consistency test.

Dynamic Tests Unfortunately, not all inconsistencies can be
fixed with the static tests from above. Some severe problems arise
dynamically while performing individual ecol operations and fur-
ther tests are required on the fly.

Circumvention of folding or self-intersection of tetrahedra can
easily be implemented by analyzing the volume of all

 before and after the collapse. Recall that the vol-
ume of a tetrahedron is defined by the parallelepipedial product of

a: cases 2 and 3 induce “dents” on the boundary surface which
may not be desired (similar to).
b: case 4 introduces degenerated cells, since is not deleted.
c: a sharp edge always implies that it’s vertices are sharp. Sim-
plifications of the boundary surfaces are allowed.

Figure 2: Edge collapse in a tetrahedral mesh: a) Mesh before
collapsing edge . b) Configuration after collapse with re-
sulting vertex . (Tetrahedra are shrinked to emphasize the un-
derlying 3-dimensional structure.)

v1v2

v4

v3

vav5

v4

v3

v1

v2

v5

va

vb

a) b)

ncellsi{ }
icellsi{ }

va vb,()
va

ei va vb,()=

ecoli a b,(): M
i

M
i 1+←

EΔ ei() EgradΔ ei() EvolumeΔ ei() ΔEequi ei()+ +=

ΔEgrad

ΔEgrad ei() wgrad sa sb–⋅=

ei

ΔEvol

ΔEvol ei() wvol vol T j() vol T j()–()

vol T j()
T j icells j{ }∈

∑+

T j ncellsi{ }∈
∑⎝

⎠

⎛

⎞

⋅=

T j
ncellsi{ } ei icellsi{ }

vol T j() T j T j

icellsi{ } ncellsi{ }∪

ΔEequi

ΔEequi ei() wequi la b, m j–()2

a b,{ } T j∈
∑

la b, m j–()2

a b,{ } T j∈
∑

–⎝

⎠

⎛

⎞
T j ncellsi∈

∑⋅=

la b, va vb–=
m j 1 T j⁄ la b,a b,{ } T j∈∑⋅=

w

Table 1: The 5 possible cases for combinations of sharp edges and
sharp vertices. The examples refer to Fig. 3.

CASE PERMISSIBLE EXAMPLE
1 yes
2 sharp optionala

3 sharp optionala

4 sharp sharp nob

5 sharp sharp sharp yesc

Figure 3: Naming conventions used for static consistency tests.
For simplicity, the examples are depicted in 2D.

Mn

ΔEedgelen ei() wedgelen va vb–⋅=

ei

vi
vi

f i

T i

v j icellsi{ }∈

e va vb

ΔEvol

v9

v0 v13 v12

v15

v4

v3

v2

v1 v14

sharp edge
regular edge

sharp vertex
regular vertex

v9v10v11

v16

v5

v6

v7

v8v17

T i ncellsi{ }∈

3

its 3 edges :

. (8)

If the volume of one of the neighboring tetrahedra becomes
negative, tetrahedral folding occurs. In this case the edge fails the
consistency test. This test also avoids degenerate cells by setting a
lower volume threshold to be retained after the collapse.

We start from the following observation: edge collapses can
cause global intersections of tetrahedra, a simple example of which
is shown in Fig. 1. This requires additional testing. If the set

 contains no sharp edge, it’s boundary
forms a convex polytope entirely wrapping the edge. A collapse of
the edge, however, does not affect the boundary of the polytope,
whose disjoint triangulation is given by the tetrahedra

. Thus, intersections can only occur with sharp
cells and we can restrict the intersection tests to the mesh bound-
ary.

Fig. 4a depicts the top view of a tetrahedral mesh where is
a sharp cell that is close to, but not intersecting the boundary of the
mesh. Let be the edge to be collapsed next and let vertex be
closer to the viewpoint than . The situation after the collapse
where is intersecting two faces of is depicted in Fig.
4b.

In essence, we have to perform triangle–triangle intersection
tests [5] in case of sharp edges or vertices which can be carried out
as follows:

First, we define the set of triangles containing all sharp
faces of tetrahedra . These are the faces which can
change after since they all share the new vertex . Thus
they are our prime candidates for intersection with other sharp
faces.

In order to avoid testing these faces against all other sharp tet-
rahedra, we propose the following iterative method: The algorithm
starts from an initial set containing the subset of all sharp
tetrahedra in the direct neighborhood of .

We take the first element of and test for intersection
with all faces in . If the test fails and no intersection occurs, we
label the tetrahedron as visited and proceed to the next element of

. Otherwise we can abort the test and reverse the current
 operation. The restriction to the sharp faces of each tetrahe-

dron simplifies the intersection test, since many cell have only one
sharp face (see Fig. 4). After probing all cells, we replace all vis-

ited tetrahedra in with their non-visited neighboring
sharp cells and thereby traverse the mesh. The are shown
in Fig. 4c for different iteration steps.

The following pseudo code summarizes the principle steps of
the intersection test:
intersection_test {

// Tsharp[i,m]: sharp cells at iteration m
// f[k]: sharp faces in
// calculate_intersections: triangle-triangle
// intersection test

// M: maximum iteration level
m = 0;
while (Tsharp[i,m] not empty && m < M){

forall f[i] in Tsharp[i,m]
forall f[k]

calculate_intersections(f[i], f[k]);
update Tsharp[i,m];

m++;
}

}

Note that the test asymptotically traverses all sharp faces of the
mesh and consumes time proportional , where stands
for the number of elements in and for the overall number
of sharp faces in the data set. As we will demonstrate in Section 3,
one can restrict the iteration to an upper bound in practice.

Edge Collapse After calculating the cost of each edge and
determining the static conditions of the corresponding edge col-
lapse operation, we build a heap with all remaining edges sorted
according to their associated costs. In order to carry out the edge
collapse , we pop the topmost edge from the heap, check for
intersections, construct a record for reconstruction, and
update all edges on the heap which are in . This process
is repeated until the heap is empty or the desired number of col-
lapses has been reached. Although we implemented various
schemes for the optimal positioning of , such as stochastic opti-
mization, we found that the halfway between and is a good
choice.

3 RESULTS
For the following investigations, an irregular mesh of a turbine
blade was selected. The original data set consists of 576,576 tetra-
hedra with scalar node data representing pressure between the
blades. Fig. 5 shows results with various levels of reconstruction,
different settings of the cost functions, and extracted isosurfaces,
both for the original mesh and for a selected subset with only one
blade. Table 2 lists the performance statistics and parameter set-
tings used to generate the example meshes. denotes the origi-
nal number of tetrahedra and is the number of tetrahedra of the
reconstructed mesh. , , and indicate the indi-
vidual cost function terms used for the example. Time shows the
computation time for a full mesh collapse, i the number of vsplits,
and Hits the number of dynamically deleted intersections
(). The performance of our algorithms was measured on an
Indigo2 R10000@195MHz. The reconstruction time for the exam-
ples was between 0.1s and 0.8s, depending on the number of splits.

Fig. 5a shows isosurfaces of the blades, extracted from

 at isovalue 5.0. A slice through the mesh is displayed in
order to depict the irregularity of the mesh reconstruction. Note
especially the high quality of the isosurfaces which confirms the
effectiveness of . A subset of the mesh with one blade is

shown in Fig. 5b-c for two different resolutions. In order to bal-
ance the individual terms of , the weights were set to

, , and , respectively.

Figure 4: Tetrahedron intersects two faces of after

collapsing edge into vertex . a) before collapse. b) after col-

lapse. c) Traversal of the mesh for iteration steps 1–

4.

ei e j and ek,

1
6
--- ei e j ek, ,[] 1

6
--- ei e j× ek,〈 〉=

icellsi{ } ncellsi{ }∪{ }

T j ncellsi{ }∈

T j

ei vb
va

T j ncellsi{ }

va

vb

icellsi

e

T j

ncellsi

a)

va

face intersection

b)

ncellsi

T i
sharp 1,{ }

va
T i

sharp 2,{ }

T i
sharp 3,{ }

T i
sharp 4,{ }

c)

T j f k{ }
ei va

T i
sharp m,{ }

f k{ }
T j ncellsi{ }∈

ecoli va

T i
sharp{ }

ncellsi
T i

sharp{ }
f k

T i
sharp{ }

ecoli

T i
sharp{ }

T i
sharp m,{ }

T i

ncellsi

O F B⋅() F
f k{ } B

ecoli
vspliti

ncellsi{ }

va
va vb

M
n

M
i

ΔEgrad ΔEvol ΔEequi

m 2=

M
15000

ΔEgrad

ΔE

wgrad 1= wvol 500= wequi 200=

4

In Fig. 5d, the mesh is cut to render its internal structure. In
order to emphasize the influence of individual cost function terms
we computed Fig. 5e-g.We observe that each of the energy terms
stands for a specific feature. , for instance in Fig. 5e recon-
structs the blade region very well, but violates volume preservation
and produces poorly shaped simplices. As expected, sus-
tains the volume, whereas preserves the equilateral shape
of the tetrahedra.

Usually, it can not be guaranteed that all intersections are
detected with . For the above example the total number of
intersection hits with is 6,116, which means that 98.8% of
the intersections have already been detected at iteration level 2.

4 CONCLUSIONS
We have presented a technique for generating progressive tetrahe-
dralizations, especially emphasizing on problems such as intersec-
tions or degenerations. The cost functions that we have proposed
are well suited for a wide range of volume data sets in different
applications areas. Although tetrahedral mesh decimation is a
complex task, we have implemented a fast and efficient method
that avoids most the pitfalls of tetrahedral meshing.

5 REFERENCES
[1] M. Garland and P. S. Heckbert. “Surface simplification using

quadric error metrics.” In Computer Graphics (SIGGRAPH ’97
Proceedings), pages 209–216, Aug. 1997.

[2] P. Heckbert, J. Rossignac, H. Hoppe, W. Schroeder, M. Soucy,
and A. Varshney. “Course no. 25: Multiresolution surface model-
ing.” In Course Notes for SIGGRAPH ’97. 1997.

[3] H. Hoppe. “Progressive meshes.” In H. Rushmeier, editor, Com-
puter Graphics (SIGGRAPH ’96 Proceedings), pages 99–108,
Aug. 1996.

[4] J. Popovic and H. Hoppe. “Progressive simplicial complexes.” In
Computer Graphics (SIGGRAPH ’97 Proceedings), pages 217–
224, Aug. 1997.

[5] F. P. Preparata and M. I. Shamos. Computational Geometry.
Springer, New York, 1985.

Figure 5: PT representations of an irregular turbine blade mesh. a) Extraction of isosurfaces of the turbine blades using marching tetrahedra. b)-c)
Part of the data set at different reconstruction levels with shrinked tetrahedra. d) Part of the mesh is cut to render its internal features. e) PT with

. f) . g) only. Parameter settings and performance statistics are listed in Table 2. (Data set courtesy of AVS Inc.)

a)

b) c) d)

e) f) g)

ΔEgrad ΔEvol ΔEequi

Table 2: Parameter settings and performance statistics for the results
shown in Fig. 5.

Fig. Mn Mi Egrad Evol Eequi Time i Hits
a) 576,576 117,139 ✓ ✓ ✓ 4h57’ 15,000 40,415
b) 78,624 8,317 ✓ ✓ ✓ 34’23 1,000 6,040
c) 78,624 13,327 ✓ ✓ ✓ 34’23’’ 2,000 6,040
d) 78,624 13,327 ✓ ✓ ✓ 34’23’’ 2.000 6,040
e) 78,624 10,554 ✓ ✕ ✕ 19’26’’ 1,000 2,386
f) 78,624 7,440 ✕ ✓ ✕ 41’58’’ 500 7,919
g) 78,624 8,169 ✕ ✕ ✓ 39’35’’ 1,000 4,798

ΔEgrad

ΔEvol
ΔEequi

m 2=
m ∞→

