2,122 research outputs found
Scheduling optimization of parallel linear algebra algorithms using Supervised Learning
Linear algebra algorithms are used widely in a variety of domains, e.g
machine learning, numerical physics and video games graphics. For all these
applications, loop-level parallelism is required to achieve high performance.
However, finding the optimal way to schedule the workload between threads is a
non-trivial problem because it depends on the structure of the algorithm being
parallelized and the hardware the executable is run on. In the realm of
Asynchronous Many Task runtime systems, a key aspect of the scheduling problem
is predicting the proper chunk-size, where the chunk-size is defined as the
number of iterations of a for-loop assigned to a thread as one task. In this
paper, we study the applications of supervised learning models to predict the
chunk-size which yields maximum performance on multiple parallel linear algebra
operations using the HPX backend of Blaze's linear algebra library. More
precisely, we generate our training and tests sets by measuring performance of
the application with different chunk-sizes for multiple linear algebra
operations; vector-addition, matrix-vector-multiplication, matrix-matrix
addition and matrix-matrix-multiplication. We compare the use of logistic
regression, neural networks and decision trees with a newly developed decision
tree based model in order to predict the optimal value for chunk-size. Our
results show that classical decision trees and our custom decision tree model
are able to forecast a chunk-size which results in good performance for the
linear algebra operations.Comment: Accepted at HPCML1
Bogoliubov modes of a dipolar condensate in a cylindrical trap
The calculation of properties of Bose-Einstein condensates with dipolar
interactions has proven a computationally intensive problem due to the long
range nature of the interactions, limiting the scope of applications. In
particular, the lowest lying Bogoliubov excitations in three dimensional
harmonic trap with cylindrical symmetry were so far computed in an indirect
way, by Fourier analysis of time dependent perturbations, or by approximate
variational methods. We have developed a very fast and accurate numerical
algorithm based on the Hankel transform for calculating properties of dipolar
Bose-Einstein condensates in cylindrically symmetric traps. As an application,
we are able to compute many excitation modes by directly solving the
Bogoliubov-De Gennes equations. We explore the behavior of the excited modes in
different trap geometries. We use these results to calculate the quantum
depletion of the condensate by a combination of a computation of the exact
modes and the use of a local density approximation
The optical depth of the Universe to ultrahigh energy cosmic ray scattering in the magnetized large scale structure
This paper provides an analytical description of the transport of ultrahigh
energy cosmic rays in an inhomogeneously magnetized intergalactic medium. This
latter is modeled as a collection of magnetized scattering centers such as
radio cocoons, magnetized galactic winds, clusters or magnetized filaments of
large scale structure, with negligible magnetic fields in between. Magnetic
deflection is no longer a continuous process, it is rather dominated by
scattering events. We study the interaction between high energy cosmic rays and
the scattering agents. We then compute the optical depth of the Universe to
cosmic ray scattering and discuss the phenomological consequences for various
source scenarios. For typical parameters of the scattering centers, the optical
depth is greater than unity at 5x10^{19}eV, but the total angular deflection is
smaller than unity. One important consequence of this scenario is the
possibility that the last scattering center encountered by a cosmic ray be
mistaken with the source of this cosmic ray. In particular, we suggest that
part of the correlation recently reported by the Pierre Auger Observatory may
be affected by such delusion: this experiment may be observing in part the last
scattering surface of ultrahigh energy cosmic rays rather than their source
population. Since the optical depth falls rapidly with increasing energy, one
should probe the arrival directions of the highest energy events beyond
10^{20}eV on an event by event basis to circumvent this effect.Comment: version to appear in PRD; substantial improvements: extended
introduction, sections added on angular images and on direction dependent
effects with sky maps of optical depth, enlarged discussion of Auger results
(conclusions unchanged); 27 pages, 9 figure
On The Origin of Very High Energy Cosmic Rays
We discuss the most recent developments in our understanding of the
acceleration and propagation of cosmic rays up to the highest energies. In
particular we specialize our discussion to three issues: 1) developments in the
theory of particle acceleration at shock waves; 2) the transition from galactic
to extragalactic cosmic rays; 3) implications of up-to-date observations for
the origin of ultra high energy cosmic rays (UHECRs).Comment: Invited Review Article to appear in Modern Physics Letters A, Review
Sectio
Static and Dry Friction due to Multiscale Surface Roughness
It is shown on the basis of scaling arguments that a disordered interface
between two elastic solids will quite generally exhibit static and "dry
friction" (i.e., kinetic friction which does not vanish as the sliding velocity
approaches zero), because of Tomlinson model instabilities that occur for small
length scale asperities. This provides a possible explanation for why static
and "dry" friction are virtually always observed, and superlubricity almost
never occurs
FUSE Observations of the HD Molecule toward HD 73882
The Lyman and Werner band systems of deuterated molecular hydrogen (HD) occur
in the far UV range below 1200 A. The high sensitivity of the FUSE mission can
give access, at moderate resolution, to hot stars shining through translucent
clouds, in the hope of observing molecular cores in which deuterium is
essentially in the form of HD. Thus, the measurement of the HD/H2 ratio may
become a new powerful tool to evaluate the deuterium abundance, D/H, in the
interstellar medium. We report here on the detection of HD toward the high
extinction star HD 73882 [E(B-V)=0.72]. A preliminary analysis is presented.Comment: 4 pages + 4 .ps figures. This paper will appear in a special issue of
Astrophysical Journal Letters devoted to the first scientific results from
the FUSE missio
Enhancement of tissue lesion depth by dual wavelength irradiation with the Nd-YAG/KTP laser: Perspectives for laser prostatectomy
The Nd-YAG/KTP laser coagulates and vaporizes prostate tissue. The objective of this study was to investigate the combined effects of both wavelengths and to determine the irradiation parameters allowing the largest lesion volume. Chicken breast tissue was irradiated ex vivo. Consecutive 1064 and 532 nm Nd-YAG/KTP laser irradiations were performed for different combinations (30 W/10 W, 20 W/20 W, 10 W/30 W) with variable total fluence (1200 J, 2400 J, 3600 J) and compared to isofluent single wavelengths at 40 W irradiation. The depths, diameters and volumes of the total lesion as well as the vaporization effects of the 532 nm wavelength on normal and on priorly coagulated tissue were analysed. Maximum total lesion depths (p< 0.001) were found under combined Nd-YAG/KTP (20 W/20 W) irradiation conditions. Ablation efficacy of the 532 nm wavelength was reduced after prior 1064 nm irradiation, but crater depths were increased. Dual wavelength irradiation with the Nd-YAG/KTP laser induces a specific denaturation process. This may represent a new approach to increase the depth of coagulation necrosis, and thus the treated volume, thereby improving long-term result
An Ultra-High-Resolution Survey of the Interstellar ^7Li-to-^6Li Isotope Ratio in the Solar Neighborhood
In an effort to probe the extent of variations in the interstellar ^7Li/^6Li
ratio seen previously, ultra-high-resolution (R ~ 360,000), high
signal-to-noise spectra of stars in the Perseus OB2 and Scorpius OB2
Associations were obtained. These measurements confirm our earlier findings of
an interstellar ^7Li/^6Li ratio of about 2 toward o Per, the value predicted
from models of Galactic cosmic ray spallation reactions. Observations of other
nearby stars yield limits consistent with the isotopic ratio ~ 12 seen in
carbonaceous chondrite meteorites. If this ratio originally represented the gas
toward o Per, then to decrease the original isotope ratio to its current value
an order of magnitude increase in the Li abundance is expected, but is not
seen. The elemental K/Li ratio is not unusual, although Li and K are formed via
different nucleosynthetic pathways. Several proposals to account for the low
^7Li/^6Li ratio were considered, but none seems satisfactory.
Analysis of the Li and K abundances from our survey highlighted two sight
lines where depletion effects are prevalent. There is evidence for enhanced
depletion toward X Per, since both abundances are lower by a factor of 4 when
compared to other sight lines. Moreover, a smaller Li/H abundance is observed
toward 20 Aql, but the K/H abundance is normal, suggesting enhanced Li
depletion (relative to K) in this direction. Our results suggest that the
^7Li/^6Li ratio has not changed significantly during the last 4.5 billion years
and that a ratio ~ 12 represents most gas in the solar neighborhood. In
addition, there appears to be a constant stellar contribution of ^7Li,
indicating that one or two processes dominate its production in the Galaxy.Comment: 54 pages, accepted for publication in the Astrophysical Journa
The Corley-Jacobson dispersion relation and trans-Planckian inflation
In this Letter we study the dependence of the spectrum of fluctuations in
inflationary cosmology on possible effects of trans-Planckian physics, using
the Corley/Jacobson dispersion relations as an example. We compare the methods
used in previous work [1] with the WKB approximation, give a new exact
analytical result, and study the dependence of the spectrum obtained using the
approximate method of Ref. [1] on the choice of the matching time between
different time intervals. We also comment on recent work subsequent to Ref. [1]
on the trans-Planckian problem for inflationary cosmology.Comment: 6 pages, Revtex
- …