24,162 research outputs found

    Genetically Modified Crops and Labor Savings in US Crop Production

    Get PDF
    In spite of widespread adoption there is mixed evidence as to whether or not adopting Genetically Modified (GM) crops increase farm welfare. One possible reason for widespread adoption is labor savings. Using a treatment effect model we estimate the labor savings associated with adopting a GM crop.genetically modified crops, agricultural biotechnology, endogeneity, treatment effects, survey weights, Crop Production/Industries,

    The mathematical basis for deterministic quantum mechanics

    Full text link
    If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes is further elucidated, as it follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.Comment: 17 pages, 3 figures. Minor corrections, comments and explanations adde

    Genetically Modified Crops, an Input Distance Function Approach

    Get PDF
    Our initial findings indicate that GM crops do not contribute to the decline of traditional family farms. We make a significant methodological impact by using the within transformation to remove unobserved individual effects and demonstrate that the within transformation results in ML estimates that are identical to OLS estimates.Production Economics, Genetically Modified Crops, Distance Function, Stochastic Frontier Analysis, Production Economics, Research Methods/ Statistical Methods,

    Counts and Sizes of Galaxies in the Hubble Deep Field - South: Implications for the Next Generation Space Telescope

    Full text link
    Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field datasets include the deepest observations ever made in the ultraviolet, optical and near infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes and isophotal filling factors of the HDF-South images. The observed integrated galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend these counts to faint levels in the infrared using models. The trend previously seen that fainter galaxies are smaller, continues to AB=29 in the high resolution HDF-S STIS image, where galaxies have a typical half-light radius of 0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS image, we show that galaxies are smaller in the near infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image, and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the implications of these data on several design concepts of the NGST near-infrared spectrograph. We compare the effects of resolution and the confusion limit of various designs, as well as the multiplexing advantages of either multi-object or full-field spectroscopy. We argue that the optimal choice for NGST spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS) with target selection by a micro electro mechanical system (MEMS) device.Comment: 27 pages including 10 figures, accepted for publication in the Astronomical Journal, June 2000, abridged abstrac

    Paspalum grass

    Get PDF
    Originally native to Uruguay and Argentina, Paspalum dilatatum was introduced into the U.S.A. about the middle of the 19th century and is now firmly established and cultivated in the Gulf States where it is known as Dallis erass after A. T. Dallis of La Grange, Georgia. It was introduced into Australia by Baron von Mueller about 1880 and since 1898 its cultivation has steadily increased

    Measurement of an Exceptionally Weak Electron-Phonon Coupling on the Surface of the Topological Insulator Bi2_2Se3_3 Using Angle-Resolved Photoemission Spectroscopy

    Full text link
    Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should have to remain coherent at ambient temperatures. Here, we studied temperature dependence of the electronic structure and the scattering rates on the surface of a model topological insulator, Bi2_2Se3_3, by high resolution angle-resolved photoemission spectroscopy. We found an extremely weak broadening of the topological surface state with temperature and no anomalies in the state's dispersion, indicating exceptionally weak electron-phonon coupling. Our results demonstrate that the topological surface state is protected not only from elastic scattering on impurities, but also from scattering on low-energy phonons, suggesting that topological insulators could serve as a basis for room temperature electronic devices.Comment: published version, 5 pages, 4 figure

    A method for dense packing discovery

    Full text link
    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting \textit{de novo} (from-scratch) searches for dense packings becomes crucial. In this paper, we use the \textit{divide and concur} framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit cell parameters with the other packing variables in the definition of the configuration space. The method we present led to improvements in the densest-known tetrahedron packing which are reported in [arXiv:0910.5226]. Here, we use the method to reproduce the densest known lattice sphere packings and the best known lattice kissing arrangements in up to 14 and 11 dimensions respectively (the first such numerical evidence for their optimality in some of these dimensions). For non-spherical particles, we report a new dense packing of regular four-dimensional simplices with density ϕ=128/2190.5845\phi=128/219\approx0.5845 and with a similar structure to the densest known tetrahedron packing.Comment: 15 pages, 5 figure

    Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    Get PDF
    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds

    Intraoral Microbial Metabolism and Association with Host Taste Perception

    Get PDF
    Metabolomics has been identified as a means of functionally assessing the net biological activity of a particular microbial community. Considering the oral microbiome, such an approach remains largely underused. While the current knowledge of the oral microbiome is constantly expanding, there are several deficits in knowledge particularly relating to their interactions with their host. This work uses nuclear magnetic resonance spectroscopy to investigate metabolic differences between oral microbial metabolism of endogenous (i.e., salivary protein) and exogenous (i.e., dietary carbohydrates) substrates. It also investigated whether microbial generation of different metabolites may be associated with host taste perception. This work found that in the absence of exogenous substrate, oral bacteria readily catabolize salivary protein and generate metabolic profiles similar to those seen in vivo. Important metabolites such as acetate, butyrate, and propionate are generated at relatively high concentrations. Higher concentrations of metabolites were generated by tongue biofilm compared to planktonic salivary bacteria. Thus, as has been postulated, metabolite production in proximity to taste receptors could reach relatively high concentrations. In the presence of 0.25 M exogenous sucrose, increased catabolism was observed with increased concentrations of a range of metabolites relating to glycolysis (lactate, pyruvate, succinate). Additional pyruvate-derived molecules such as acetoin and alanine were also increased. Furthermore, there was evidence that individual taste sensitivity to sucrose was related to differences in the metabolic fate of sucrose in the mouth. High-sensitivity perceivers appeared more inclined toward continual citric acid cycle activity postsucrose, whereas low-sensitivity perceivers had a more efficient conversion of pyruvate to lactate. This work collectively indicates that the oral microbiome exists in a complex balance with the host, with fluctuating metabolic activity depending on nutrient availability. There is preliminary evidence of an association between host behavior (sweet taste perception) and oral catabolism of sugar.</p

    Correlated patterns in non-monotonic graded-response perceptrons

    Full text link
    The optimal capacity of graded-response perceptrons storing biased and spatially correlated patterns with non-monotonic input-output relations is studied. It is shown that only the structure of the output patterns is important for the overall performance of the perceptrons.Comment: 4 pages, 4 figure
    corecore