Science objectives for the Next Generation Space Telescope (NGST) include a
large component of galaxy surveys, both imaging and spectroscopy. The Hubble
Deep Field datasets include the deepest observations ever made in the
ultraviolet, optical and near infrared, reaching depths comparable to that
expected for NGST spectroscopy. We present the source counts, galaxy sizes and
isophotal filling factors of the HDF-South images. The observed integrated
galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend
these counts to faint levels in the infrared using models. The trend previously
seen that fainter galaxies are smaller, continues to AB=29 in the high
resolution HDF-S STIS image, where galaxies have a typical half-light radius of
0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured
sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS
image, we show that galaxies are smaller in the near infrared than they are in
the optical. We analyze the isophotal filling factor of the HDF-S STIS image,
and show that this image is mostly empty sky even at the limits of galaxy
detection, a conclusion we expect to hold true for NGST spectroscopy. At the
surface brightness limits expected for NGST imaging, however, about a quarter
of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the
implications of these data on several design concepts of the NGST near-infrared
spectrograph. We compare the effects of resolution and the confusion limit of
various designs, as well as the multiplexing advantages of either multi-object
or full-field spectroscopy. We argue that the optimal choice for NGST
spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS)
with target selection by a micro electro mechanical system (MEMS) device.Comment: 27 pages including 10 figures, accepted for publication in the
Astronomical Journal, June 2000, abridged abstrac