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Mobile, AL 

Justin G. Gardner, Ph.D. Candidate, and Carl H. Nelson, Professor 
 

Introduction: 

 Genetically modified organisms (GMOs) have been used in crop production for a 

decade.  Currently, the most common GMOs can be classified into two groups:  herbicide 

tolerant (HT) and insect resistant varieties of corn, cotton and soybeans.  This technology 

was not developed via conventional crop breeding methods.  Instead, a trait that is foreign 

to the organism was inserted into its genome.  Roundup Ready soybeans are resistant to 

the herbicide glyphosate, which Monsanto markets under the brand name Roundup.  

Glyphosate resistance has also been inserted into corn and cotton.  Insect resistance is 

achieved by inserting a gene from the bacteria Bacillus thuringiensis (Bt), which creates a 

toxin that affects Lepidoptera larvae.  Currently the Bt trait has been inserted into corn 

and cotton to control the European Corn Borer, the Corn Rootworm, the Cotton 

Bollworm, the Pink Bollworm, the Asian Bollworm and the Tobacco Budworm. 

 Fernandez-Cornejo et al. (2002) found that HT soybean adoption did not have a 

statistically significant effect on farmer profit.  Why then do we observe high levels of 

HT soybean adoption if there is no profit effect?  It has been hypothesized that GMOs 

save labor and management (Alston et al. 2002; Bullock and Nitsi 2001; Marra 2001).   

Based on ARMS data from 2001-2003 Fernandez-Cornejo and Caswell (2006) report that 

17%, 23%, 26%, 6%, 15% of all HT soybean, HT cotton, Bt cotton, HT corn and Bt corn, 

respectively use the technology to save on management time and make other practices 
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easier, but they do not directly estimate time savings.  We estimate the time savings 

associated with adopting a GM input, and find that HT soybeans and Bt cotton save labor 

while GM corn does not. 

Literature Review: 

 Marra et al. (2002) and Marra (2001) reviewed literature on GM crops and 

concluded that farmers who adopt GM crops are better off.  The authors reached several 

broad conclusions regarding the current generation of GM field crops,  Bt cotton is likely 

to be profitable in the cotton belt and reduces pesticide use, adopting Bt corn should 

provide a small yield increase, and in some cases adopting causes significant increases in 

profit.  For HT soybeans they conclude that cost savings should offset any revenue loss 

due to yield drag.  These conclusions seem plausible as there are several effects that 

could induce a welfare gain.  Bullock and Nitsi (2001) list four advantages of HT crops.  

1) HT technology leads the farmer to substitute relatively less-expensive glyphosate for 

other herbicides.  2)  Farmers realize a change in the shadow price of labor and 

management.  3)  Due to glyphosate’s effectiveness at killing larger weeds, weather 

induced spraying delays do not significantly affect weed control.  4)  When farmers 

switch to HT technology substitution effects lead to a decrease in the price of alternative 

herbicides.  The widespread adoption of GM crops may be evidence of a welfare gain.  In 

2005 Herbicide tolerant crops made up 87% and 60%, of U.S. soybean and cotton 

acreage respectively, while 35% of the corn acreage and 60% of cotton acres were insect 

resistant (Fernandez-Cornejo and Caswell, 2006).  Bernard, Pesek and Fan (2004) found 

that farms in Delaware had yield increases and decreases in weed control costs when they 

adopted HT soybeans.  So it would seem that adopting this technology results in a 
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welfare gain for farmers.  But most claims of welfare gain are not supported by empirical 

evidence.  The literature requires more examination before one can draw a conclusion 

from it. 

 Marra et al. (2002) and Marra’s (2001) evidence concerning the profitability of Bt 

cotton is overwhelming.  All of the 47 studies that were compiled indicated that Bt cotton 

is profitable.  Only two HT cotton studies were compiled, both indicated that the 

technology was profitable, as did two studies where these two traits were “stacked”.  

However, the GM corn and soybean evidence lacks the depth to be conclusive; the 

author(s) drew conclusions based on two studies for each GM crop.  Studies using the 

USDA’s ARMS were excluded from the analysis based on the argument that field level 

data, such as that collected in ARMS phase II, could not capture within-farm effects 

leading to biased results.  Marra’s (2001) evidence for this argument is based on 

differences in unconditional means and no tests of statistical significance were presented.  

ARMS collects data on a large number of variables, such as education and farm size, 

which could be used to estimate an unbiased conditional mean in a well designed 

regression framework.  As such, studies that use ARMS field level data should not be 

excluded from a review of the literature.  

One study that was excluded in Marra’s analysis was that by Fernandez-Cornejo 

et al. (2002), which used ARMS data and concluded that HT soybean adoption did not 

have a statistically significant effect on farmer profit.  The Fernandez-Cornejo et al. study 

made use of a flexible functional form to estimate a profit function and corrected for 

endogeneity using the Heckman 2-step procedure.  As cited earlier, the authors did not 

find a statistically significant profit effect.  Bullock and Nitisi’s (2001) study, which used 
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a cost-minimizing simulation, found that GM soybean farmers are less profitable than 

their conventional counterparts.  However, they did not take into account the labor and 

management savings that arise from convenience and timing factors, as these were not 

observable variables.  This leads to a puzzling conclusion; it is uncertain whether or not 

HT soybeans are more profitable than conventional soybeans, but almost every farmer 

uses the technology.  Perhaps the research community has been unable to measure an 

important component of farmers’ welfare.   

 There are several possible factors that may not have been measured.  Most 

notably are the potential time and management savings associated with these crops.  

Carpenter and Gianessi (1999) cite that the primary reason for adopting HT soybeans is 

simplicity of weed control and that glyphosate can control a wide range of weeds without 

harming the HT crop.  Additionally, the authors point out that “Roundup Ready weed 

control programs fit into on-going trends towards postemergence weed control, adoption 

of conservation tillage practices and narrow row spacing” (p 67).   Glyphosate can also 

kill larger weeds than other postemergence herbicides, and it has no residual activity thus 

it does not limit crop rotation programs.  Fulton and Kyowski (1999) discussed the 

importance of management and cropping practices in their analysis of HT canola in 

Australia.  “The argument that producers benefit if the relative price of growing [HT] 

canola falls depends critically on the belief that all farmers are identical in the agronomic 

factors they face, the management skills they possess, and the technology they have 

adopted” (p. 86).  In their theoretical model the authors showed how farmers who use a 

reduced tillage cropping practice may find it profitable to adopt HT canola while those 

who use conventional tillage may not.  Fernandez-Cornejo et al. (2005) made an 
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important advancement by explaining high adoption rates for roundup ready soybeans in 

spite of the technology’s inability to increase farm profits.  Using a household production 

framework they found a positive relationship between HT soybean adoption and off farm 

income.  Their result suggests that adopting HT soybeans can free up resources for 

alternative uses without decreasing on-farm income.   

One of the more recently developed GMOs is a Bt variety that is resistant to Corn 

Rootworm (CRW).  Until recently, crop rotation was an adequate control for CRW, but 

the pest has evolved, diminishing the effectiveness of crop rotation.  Alston et al. (2002) 

provided an ex-ante analysis of CRW-resistant GM corn.  The analysis assumed that the 

GM control method will cost the same as the conventional control method, but the GM 

control should provide higher yields, “because its effectiveness does not depend on 

timing, weather, calibration of application equipment or soil condition” (p.74).  By 

varying location, pest pressure and crop rotation practice the authors were able to 

generate adoption benefits ranging from $0.00 to $31.87 per acre.  They reported that 

producers would be willing to pay an average of $4.18 per acre for the time savings and 

risk reduction associated with CRW-resistant corn.   

Methods: 

 If, as is the case for HT soybeans, there is no clear profit effect then labor and 

management savings may be the key reason farmers adopt the technology.  Farmers can 

then reallocate household labor to off-farm work or leisure thus increasing household 

welfare and maintaining the same on-farm profit.  Due to data limitations it is difficult to 

measure the quantity or quality of management used on a farm; however we can test the 

hypothesis that GM crops save household labor.  We assume that a farm is managed by a 
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single household, which supplies all of the unpaid on-farm labor.  There is a well 

developed literature on how agricultural households allocate labor between on and off-

farm work (see Benjamin 1992; Skoufias 1994; Fernandez-Cornejo et al, 2005).  Under 

the assumption of separability a household will first determine the quantity of on-farm 

labor needed to maximize profit.  Then the household will use farm profits, wages and 

prices to maximize utility.  “[U]nder separability the market wage provides an exogenous 

measure of the value of time of family labor, irrespective of whether they work on or off 

of the farm, while production decisions of the household influence family labor supply 

only through the income effects of changes in farm profits” (Skoufias, 1994 p. 215).  The 

necessary conditions to ensure labor separability are rather steep, they require that 1) off-

farm employment constraints be non-binding, 2) family and hired labor must be perfect 

substitutes, and 3) farmers have no preferences for on or off farm work.  Fall and Magnac 

(2004) concluded that farmers exhibited preferences for on-farm work in Europe, thus it 

is reasonable to expect that separability may not hold in U.S. agriculture.  If the 

household exhibits a preference for on-farm work there will be important implications in 

how the household allocates labor.  If the preference is strong enough then all available 

labor will be allocated to on-farm work, constrained by the number of hours in the day or 

off-farm obligations.    

Assuming that separability does not hold, consider now how the decision making 

process on the farm leads to a process that generates field-level data.  A utility 

maximizing farm household will simultaneously decide how much labor to allocate to on- 

and off-farm work, input quantities, technology (i.e. GM or non-GM), production 

practice (i.e. no-till or conventional tillage) and total amount of land to put into 
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production.  Planting and harvesting are critical, as there is a relatively small window of 

opportunity to perform these tasks.  If household members prefer to work on the farm 

then the household’s labor constraint will be binding during these time periods.  During 

the growing season the household is less likely to be faced with a binding on-farm labor 

constraint, and will thus have a very low opportunity cost of labor.  If a random event, 

such as a pest infestation or adverse weather, occurs during this period the household will 

respond by applying labor that otherwise would have no productive value. 

Upon arriving in a field it can be assumed that the household’s production 

decisions were made at the farm level.  The field-level labor allocation is based on a 

standard cropping practice, resulting in a structural break in the decision making process.  

The household, for example, has determined to use a no-till cropping practice with HT 

technology.  Thus the worker expects to make one “burn down” herbicide application and 

one pass across the field with a planter.  Depending on the size of the equipment used he 

can calculate an expected amount of time it will take to prepare and plant the field.  

During the growing season household labor is sitting idle, and can be called into service 

to respond to random adverse events.  The field may, for example, develop a weed 

problem which can be corrected by applying glyphosate.  Our objective is to compare the 

amount of household labor used in that field with the amount of household labor used in 

another field, where HT technology is not being used.   This difference can be accurately 

identified after controlling for observable variables that may influence labor usage in the 

field.  In addition the amount of labor used in the field could vary based on farmer ability, 

and the amount of capital applied to the field.  From there any differences in labor could 

be attributed to random events such as weather and pest pressure.  The structural break 
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between the decision making process (farm level) and the unit of analysis (field level) 

should guard against endogeneity.   

This research question can be answered by estimating a structural equation, such 

as a profit function or a production function, or an average treatment effect model (ATE) 

which we use.  Heckman (2001) discussed the tradeoffs between estimating a structural 

equation and an (ATE) model.  A structural model, derived from economic theory, is 

superior to a treatment effect model.  Parameter estimates can be used to answer a wide 

range of economic questions, and provide well defined welfare comparisons.  However, 

the theoretical restrictions needed to estimate a valid structural equation are difficult to 

meet, Reziti and Ozanne (1999) surveyed literature on duality and concluded that an 

overwhelming number of applied papers reject theoretical regularity conditions.   Field-

level data is generated in such a way that it will confound the estimation of a traditional 

production function.  A pest infestation, for example, will reduce yield and require more 

labor.  An early-season flood will result in the field being replanted at a later date.  These 

are plausible situations that could lead to the implausible result that labor decreases yield.  

Rectifying this problem would require detailed data on the severity and nature of random 

events. 

In contrast to the structural model approach an ATE model only requires the 

identification of a small number of parameters.  Consequently, it can only be used to 

answer a small number of research questions.  The conditions necessary to identify these 

parameters are weaker than those required by a structural model; all that is required is an 

exogenous treatment.  The ATE model takes the following form (Wooldridge, 2002) 
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The dependent variable, )ln( lx , is the natural logarithm of household labor used in crop 

production, g is a dummy variable indicating a GM crop.  The remainder of the model is 

known as the control function, and xk (k=1,2,…K) are control variables.  The objective is 

to estimate the ATE, 0γ , conditional on the control function.  This can be interpreted as 

the percentage change in labor usage.  For comparison purposes consider table 1, which 

reports mean household labor usage by cropping practice and GM crop.  The means 

presented in table one is of little use because they do not control for other factors that 

may influence the amount of labor used on a field.  Any variable that could explain labor 

usage is a candidate for the control function.  The variables used as controls will be 

descried below in the data section.  Identification of the treatment effect requires that the 

treatment be exogenous, thus we test for endogeneity.  A priori we expect that the 

decision to use a GM technology is exogenous, because the decision making process that 

could lead to endogeneity is determined at the farm level, and our data is field level.  This 

belief has support in the literature, Bernard, Pesek and Fan (2004) did not find 

endogeneity when they studied HT soybean farmers in Delaware. 

[Table 1. About Here] 

Data: 

We use data from the United States Department of Agriculture’s (USDA) 

Agricultural Resource Management Survey (ARMS).  Annual cross section field level 

data for corn, soybeans, and cotton were collected in 2001, 2002, and 2003 respectively.  

ARMS data is collected using a stratified random sampling and as such the USDA 

provides survey weights that can be used to correct for the survey design.  These weights 

are required when estimating descriptive statistics, such as means or totals.  However, the 
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weights are not always needed when estimating regression parameters.  Ullah and 

Bruening (1998), present a specification test to determine if the weights are informative.  

We will discuss this test in more detail below 

The dependent variable, unpaid labor, is a full accounting of the time spent 

working on the farm throughout the growing season by individuals who were not paid for 

their services.  It does not include any form of paid labor, such as full time, part time or 

seasonal workers; labor provided by custom contractors is also excluded.  We assume 

that unpaid workers are members of the household.  The “treatment variables” are 

dummy variables indicating the adoption of Bt or HT crops and the adoption of no-till 

cropping practices.   A priori we expect that the coefficients on these variables to be 

negative.  Interaction terms between treatment variables are included when appropriate.   

The “control variables” are not intended to have any economic meaning, although 

some of them may be of economic importance.  The control variables are used to 

condition the treatment effect on observable characterizes.  Field size (aplfield and 

aplfield2) is a great example of the importance of control variables.  Obviously, a large 

field will require more time than a small field, failing to account for field size would 

result in an omitted variable bias.  Farm size (aplfarm and aplfarm2) is included to control 

for unobserved capital equipment, larger farms must invest more heavily in capital 

equipment.  Yield can account for unobserved land quality, input usage, weather and 

managerial ability so it is included as a control variable.  Herbicide active ingredients 

(herbai) can control for unobserved pest pressure.  In addition to these controls we 

include the unpaid wage rate and the wage rate for paid full time employees.  Although 

these last two variables – the price of the input and its substitute – are important to 
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include for theoretical reasons they are potentially endogenous variables and hence have 

no meaningful interpretation in this context1. 

Results: 

 Prior to estimating the treatment effect we preformed two pre-tests.  The first, a 

specification test outlined by Ullah and Bruening (1998), was used to test the hypothesis 

that the survey weights are not informative.  The informative weights test is 

straightforward, after specifying the model it is augmented with weighted versions of the 

independent variables.  If the weighted variables are jointly insignificant, based on an F-

test, then one can conclude that the weights are not informative and they can be 

discarded.  It is important to note a major drawback of this test; if the model is 

misspecified the test could falsely detect informative survey weights.  For all three crops 

we find that the weights are not informative2.  The second pre-test is the well known 

Hausman endogeneity test.  The treatment effect, conditional on the observable control 

variables, can be identified if the treatment is exogenous (Greene, 2003).  For soybeans 

and cotton we do not find endogeneity, but the treatment variables (Bt, HT and no-till) 

appear to be endogenous in the corn model3.  It is interesting to note that, depending on 

the significance level chosen by the researcher, the corn model may require weights.  We 

believe that the weights test for the corn model was biased due to endogeneity.   

                                                 
1 An early draft of this paper included interactions between the GM crop dummy variables and the control 
function variables, as well as state dummy variables.  These variables were either insignificant or collinear 
and thus dropped from the model.   
2 Soybeans:  F=1.27, Prob>F=0.22; Corn:  F=1.49, Prob>F=0.10; Cotton:  F=0.63, Prob>F=0.86.  The 
estimated equations have been omitted for space considerations, and are available from the authors upon 
request.   
3 The estimated equations have been omitted for space considerations, and are available from the authors 
upon request.   
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 As much of the motivation behind this research centers on HT soybeans we will 

begin by discussing the results from the soybean model (Table 2).  Adopting HT 

soybeans, under conventional tillage, reduces household labor by 23 percent.  This result 

explains how the literature on HT soybeans has not found a profit effect in spite of wide 

spread adoption.  The result is also consistent with Fernancez-Cornjeo et al.’s (2005) 

findings.  It appears that farmers are substituting HT soybeans for household labor, 

freeing up the resource for off-farm employment and leisure.  Although not the primary 

focus of this study the no-till coefficient is also of interest, adopting a no-till cropping 

practice, conditional on using conventional soybean seeds, results in a 53 percent 

reduction in household labor.  Although the interaction term between HT and no-till is 

not statistically significant we found that the three variables are jointly significant4.  

Simultaneous adoption of HT and no-till soybeans reduces household labor by 61 

percent. 

[Table 2. About Here] 

 The results from the corn model provide an interesting contrast to the soybean 

results5.  The no-till coefficient is about the same size as the no-till coefficient in the 

soybean model; however, neither Bt corn nor HT corn has a statistically significant 

impact on household labor.  This result can easily be explained, in the absence of Bt 

technology many corn farmers simply do not attempt to control for Corn Borers 

(Fernandez-Cornejo et al 2002b).  Thus we should not expect to see a difference in the 

labor usage between Bt and non-Bt corn crops.  As discussed above the literature has 

                                                 
4 F=40.44, Prob.>0=0.00 
5 The corn model was estimated using Instrumental Variables, therefore it is technically a local average 
treatment effect (LATE) model.  A list of instruments is available from the authors upon request.   
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demonstrated a clear welfare gain from the adoption of Bt corn, thus it is not surprising to 

see adoption of this technology in spite of the absence of a labor savings. 

 Unlike Bt corn adopting Bt cotton saves household labor.  This result is not 

surprising as cotton growers have had a long standing battle against insect pests.  

Conventional cotton crops require frequent spraying, Bt cotton requires less spraying.  

This difference amounts to a 29% decrease in household labor.  This result is of unique 

importance for cotton, as discussed above Bt cotton increases profit due to reduced pest 

control cost and increased yield.  If the value of unpaid labor was not counted in previous 

studies then our result implies that the true welfare gain is actually much higher.   

 To demonstrate the interpretation of these results consider Table 3, which shows 

the unconditional means for farm size, field size, total labor and household labor. Assume 

that a farmer has an average-sized soybean farm (517.4 acres) and uses the average 

amount of household labor per acre (1.26 hours).  Complete adoption of HT soybeans 

will reduce the quantity of household labor applied by 23%, for a total of 148.9 hours, or 

about 15 10-hour days throughout the growing season.  Likewise and average cotton 

household can save 787 hours, or an average of 30 hours a week over a 6-month growing 

season.  It is difficult to place a value on this time as it could be used for leisure or to 

generate off-farm income.  

[Table 3 About Here] 

Conclusion: 

This study is the first known estimate of the labor savings associated with GM 

crops.  We assume that all unpaid labor is household labor, and use field-level data to 

estimate an ATE model.  With the exception of corn, we find that GM crops save labor.  
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This result is consistent with current crop production practices, in the absence of Bt corn 

farmers do not rely heavily on insecticides for pest control, while cotton farmers do.  

Adopting HT soybeans reduces labor usage, on average, by 23 percent.  This result fills 

in a significant gap in the literature, and explains why soybean growers have readily 

adopted HT technology in spite of an apparent lack of a welfare gain.  Additionally, this 

result points us in a different direction for future research on the farm-level impacts of 

biotechnology.  It is important to differentiate between paid and unpaid labor, and we 

must also consider how these technologies impact non-farming activities such as leisure 

and off-farm employment.    
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Table 1, Household Labor by Crop 
  Cotton Corn Soybeans 
 NT=1 NT=0 NT=1 NT=0 NT=1 NT=0 
 HT=1 HT=0 HT=1 HT=0 HT=1 HT=0 HT=1 HT=0 HT=1 HT=0 HT=1 HT=0
BT=1 1.44 *** 1.92 2.04 *** *** *** 3.57 - - - - 
BT=0 1.66 *** 2.32 4.35 *** 1.90 *** 2.75 1.13 1.11 1.35 1.38 

*** Results suppressed to prevent disclosure of personal information. 
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Table 2,  Regression Results 
Dependant 
Variable: Soybeans Corn Cotton 
Household Labor  Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 
HT -0.23*** 0.06 -3.44 4.73 -0.17 0.11 
NT -0.53*** 0.10 -0.60*** 0.15 -0.03 0.26 
BT - - -0.32 1.44 -0.29** 0.14 
Stacked - - 1.44 3.12 -0.07 0.16 
HT*NT 0.15 0.10 6.97 9.85 -0.23 0.30 
NT*Stacked - - -1.27 3.42 0.41** 0.20 
Herbai 0.00 0.02 -0.03 0.03 -0.05* 0.03 
Wage -0.30*** 0.02 -0.35*** 0.03 -0.34*** 0.04 
UWage -0.21 0.20 0.63** 0.26 0.10 0.38 
Yield 0.10** 0.04 0.05 0.05 -0.07 0.06 
aplfarm -0.07*** 0.02 -0.13*** 0.03 -0.17*** 0.04 
aplfield 0.61*** 0.06 0.72*** 0.13 0.86*** 0.07 
yield2 0.02 0.01 0.01 0.01 -0.01* 0.01 
aplfarm2 -0.03** 0.01 0.01 0.01 -0.06** 0.02 
aplfield2 0.01 0.02 0.03 0.03 0.00 0.03 
edu -0.04 0.05 -0.21*** 0.07 0.04 0.10 
_cons 1.37*** 0.17 0.27 0.77 3.16** 1.13 
       
F 138.09***  62.9***  41.74***  
Adj. R2 0.49  0.18  0.34  
N 1880   1861   1269   

* Statistically significant at the 10 percent level 
** Statistically significant at the 5 percent level 
*** Statistically significant at the 1 percent level 
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Table 3, Means - Select Variables 
Variable Cotton Soybeans Corn 
APLFARM 1162.42 517.42 391.20 
APLFIELD 34.69 41.41 36.07 
Labor Per Acre 5.79 1.49 2.95 
Household Labor 
Per Acre 2.30 1.26 2.60 

 

 


