4,962 research outputs found

    Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene

    Full text link
    The glass transition temperature and relaxation dynamics of the segmental motions of thin films of polystyrene labeled with a dye, 4-[N-ethyl-N-(hydroxyethyl)]amino-4-nitraozobenzene (Disperse Red 1, DR1) are investigated using dielectric measurements. The dielectric relaxation strength of the DR1-labeled polystyrene is approximately 65 times larger than that of the unlabeled polystyrene above the glass transition, while there is almost no difference between them below the glass transition. The glass transition temperature of the DR1-labeled polystyrene can be determined as a crossover temperature at which the temperature coefficient of the electric capacitance changes from the value of the glassy state to that of the liquid state. The glass transition temperature of the DR1-labeled polystyrene decreases with decreasing film thickness in a reasonably similar manner to that of the unlabeled polystyrene thin films. The dielectric relaxation spectrum of the DR1-labeled polystyrene is also investigated. As thickness decreases, the α\alpha-relaxation time becomes smaller and the distribution of the α\alpha-relaxation times becomes broader. These results show that thin films of DR1-labeled polystyrene are a suitable system for investigating confinement effects of the glass transition dynamics using dielectric relaxation spectroscopy.Comment: 10 pages, 11 figures, 2 Table

    The Stokes-Einstein Relation in Supercooled Aqueous Solutions of Glycerol

    Full text link
    The diffusion of glycerol molecules decreases with decreasing temperature as its viscosity increases in a manner simply described by the Stokes-Einstein(SE) relation. Approaching the glass transition, this relation breaks down as it does with a number of other pure liquid glass formers. We have measured the diffusion coefficient for binary mixtures of glycerol and water and find that the Stokes-Einstein relation is restored with increasing water concentration. Our comparison with theory suggests that addition of water postpones the formation of frustration domainsComment: 4 Pages and 3 Figure

    Preliminary Evaluation of Lectins as Fluorescent Probes of Seed Structure and Composition

    Get PDF
    Several commercially available fluoresceinisothiocyanate and rhodamine isothiocyanateconjugated plant lectins have been applied to cereal and oilseed tissues to permit identification and localization of specific structures and carbohydrates by fluorescence microscopy . Ulex europeaus Agglutinin I (UEAl) and Ricinis communis Agglutinin I (RCA I) showed specificity for the amyloids in rapeseed cotyledonary cell walls . Wheat Germ Agglutinin (WGA) bound to rapeseed coat mucilage, as well as fungal hyphae in infected wheat . Lens culinaris Agglutinin (LCA) bound only to starch in cereal sections, and at higher magnifications of isolated starch granules , the annular structure was clearly visible

    Thermal Time Scales in a Color Glass Condensate

    Full text link
    In a model of relativistic heavy ion collisions wherein the unconfined quark-gluon plasma is condensed into glass, we derive the Vogel-Fulcher-Tammann cooling law. This law is well known to hold true in condensed matter glasses. The high energy plasma is initially created in a very hot negative temperature state and cools down to the Hagedorn glass temperature at an ever decreasing rate. The cooling rate is largely determined by the QCD string tension derived from hadronic Regge trajectories. The ultimately slow relaxation time is a defining characteristic of a color glass condensate.Comment: 5 pages, ReVTeX format, nofigure

    Spacings of Quarkonium Levels with the Same Principal Quantum Number

    Get PDF
    The spacings between bound-state levels of the Schr\"odinger equation with the same principal quantum number NN but orbital angular momenta \ell differing by unity are found to be nearly equal for a wide range of power potentials V=λrνV = \lambda r^\nu, with ENF(ν,N)G(ν,N)E_{N \ell} \approx F(\nu, N) - G(\nu,N) \ell. Semiclassical approximations are in accord with this behavior. The result is applied to estimates of masses for quarkonium levels which have not yet been observed, including the 2P ccˉc \bar c states and the 1D bbˉb \bar b states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process using psfig.sty

    Relation between positional specific heat and static relaxation length: Application to supercooled liquids

    Full text link
    A general identification of the {\em positional specific heat} as the thermodynamic response function associated with the {\em static relaxation length} is proposed, and a phenomenological description for the thermal dependence of the static relaxation length in supercooled liquids is presented. Accordingly, through a phenomenological determination of positional specific heat of supercooled liquids, we arrive at the thermal variation of the static relaxation length ξ\xi, which is found to vary in accordance with ξ(TT0)ν\xi \sim (T-T_0)^{-\nu} in the quasi-equilibrium supercooled temperature regime, where T0T_0 is the Vogel-Fulcher temperature and exponent ν\nu equals unity. This result to a certain degree agrees with that obtained from mean field theory of random-first-order transition, which suggests a power law temperature variation for ξ\xi with an apparent divergence at T0T_0. However, the phenomenological exponent ν=1\nu = 1, is higher than the corresponding mean field estimate (becoming exact in infinite dimensions), and in perfect agreement with the relaxation length exponent as obtained from the numerical simulations of the same models of structural glass in three spatial dimensions.Comment: Revised version, 7 pages, no figures, submitted to IOP Publishin

    Entropic Origin of the Growth of Relaxation Times in Simple Glassy Liquids

    Get PDF
    Transitions between ``glassy'' local minima of a model free-energy functional for a dense hard-sphere system are studied numerically using a ``microcanonical'' Monte Carlo method that enables us to obtain the transition probability as a function of the free energy and the Monte Carlo ``time''. The growth of the height of the effective free energy barrier with density is found to be consistent with a Vogel-Fulcher law. The dependence of the transition probability on time indicates that this growth is primarily due to entropic effects arising from the difficulty of finding low-free-energy saddle points connecting glassy minima.Comment: Four pages, plus three postscript figure

    Inherent Structures in models for fragile and strong glass

    Full text link
    An analysis of the dynamics is performed, of exactly solvable models for fragile and strong glasses, exploiting the partitioning of the free energy landscape in inherent structures. The results are compared with the exact solution of the dynamics, by employing the formulation of an effective temperature used in literature. Also a new formulation is introduced, based upon general statistical considerations, that performs better. Though the considered models are conceptually simple there is no limit in which the inherent structure approach is exact.Comment: 19 pages, 4 figure

    Glassiness in a model without energy barriers

    Full text link
    We propose a microscopic model without energy barriers in order to explain some generic features observed in structural glasses. The statics can be exactly solved while the dynamics has been clarified using Monte Carlo calculations. Although the model has no thermodynamic transition it captures some of the essential features of real glasses, i.e., extremely slow relaxation, time dependent hysteresis effects, anomalous increase of the relaxation time and aging. This suggests that the effect of entropy barriers can be an important ingredient to account for the behavior observed in real glasses.Comment: 11 Pages + 3 Figures, Revtex, uufiles have been replaced since figure 2 was corrupted in the previous submissio

    Free Energy Landscape Of Simple Liquids Near The Glass Transition

    Get PDF
    Properties of the free energy landscape in phase space of a dense hard sphere system characterized by a discretized free energy functional of the Ramakrishnan-Yussouff form are investigated numerically. A considerable number of glassy local minima of the free energy are located and the distribution of an appropriately defined ``overlap'' between minima is calculated. The process of transition from the basin of attraction of a minimum to that of another one is studied using a new ``microcanonical'' Monte Carlo procedure, leading to a determination of the effective height of free energy barriers that separate different glassy minima. The general appearance of the free energy landscape resembles that of a putting green: deep minima separated by a fairly flat structure. The growth of the effective free-energy barriers with increasing density is consistent with the Vogel-Fulcher law, and this growth is primarily driven by an entropic mechanism.Comment: 10 pages, 6 postscript figures, uses iopart.cls and iopart10.clo (included). Invited talk at the ICTP Trieste Conference on "Unifying Concepts in Glass Physics", September 1999. To be published in J. Phys. Cond. Ma
    corecore