30,524 research outputs found

    Wind tunnel evaluation of YF-12 inlet response to internal airflow disturbances with and without control

    Get PDF
    The response of terminal-shock position and static pressures in the subsonic duct of a YF-12 aircraft flight-hardware inlet to perturbations in simulated engine corrected airflow were obtained with and without inlet control. Frequency response data, obtained with inlet controls inactive, indicated the general nature of the inherent inlet dynamics, assisted in the design of controls, and provided a baseline reference for responses with active controls. All the control laws were implemented by means of a digital computer that could be programmed to behave like the flight inlet's existing analog control. The experimental controls were designed using an analytical optimization technique. The capabilities of the controls were limited primarily by the actuation hardware. The experimental controls provided somewhat better attenuation of terminal shock excursions than did the YF-13 inlet control. Controls using both the forward and aft bypass systems also provided somewhat better attenuation than those using just the forward bypass. The main advantage of using both bypasses is in the greater control flexibility that is achieved

    Terminal shock position and restart control of a Mach 2.7, two-dimensional, twin duct mixed compression inlet

    Get PDF
    Experimental results of terminal shock and restart control system tests of a two-dimensional, twin-duct mixed compression inlet are presented. High-response (110-Hz bandwidth) overboard bypass doors were used, both as the variable to control shock position and as the means of disturbing the inlet airflow. An inherent instability in inlet shock position resulted in noisy feedback signals and thus restricted the terminal shock position control performance that was achieved. Proportional-plus-integral type controllers using either throat exit static pressure or shock position sensor feedback gave adequate low-frequency control. The inlet restart control system kept the terminal shock control loop closed throughout the unstart-restart transient. The capability to restart the inlet was non limited by the inlet instability

    A throat-bypass stability system for a YF-12 aircraft research inlet using self-acting mechanical valves

    Get PDF
    Results of a wind tunnel investigation are presented. The inlet was modified so that airflow can be removed through a porous cowl-bleed region in the vicinity of the throat. Bleed plenum exit flow area is controlled by relief type mechanical valves. Unlike valves in previous systems, these are made for use in a high Mach flight environment and include refinements so that the system could be tested on a NASA YF-12 aircraft. The valves were designed to provide their own reference pressure. The results show that the system can absorb internal-airflow-transients that are too fast for a conventional bypass door control system and that the two systems complement each other quite well. Increased tolerance to angle of attack and Mach number changes is indicated. The valves should provide sufficient time for the inlet control system to make geometry changes required to keep the inlet started

    The Flow of a Viscous Compressible Fluid Through a Very Narrow Gap

    Get PDF
    The effect of compressibility on the pressure distribution in the narrow gap between a rotating cylinder and a plane in a viscous fluid was studied by Taylor and Saffman [1] during an investigation of the centripetal pump effect discovered by Reiner [2]

    A throat-bypass stability-bleed system using relief valves to increase the transient stability of a mixed-compression inlet

    Get PDF
    A stability-bleed system was installed in a YF-12 flight inlet that was subjected to internal and external airflow disturbances in the NASA Lewis 10 by 10 foot supersonic wind tunnel. The purpose of the system is to allow higher inlet performance while maintaining a substantial tolerance (without unstart) to internal and external disturbances. At Mach numbers of 2.47 and 2.76, the inlet tolerance to decreases in diffuser-exit corrected airflow was increased by approximately 10 percent of the operating-point airflow. The stability-bleed system complemented the terminal-shock-control system of the inlet and did not show interaction problems. For disturbances which caused a combined decrease in Mach number and increase in angle of attack, the system with valves operative kept the inlet started 4 to 28 times longer than with the valves inoperative. Hence, the stability system provides additional time for the inlet control system to react and prevent unstart. This was observed for initial Mach numbers of 2.55 and 2.68. For slow increase in angle of attack at Mach 2.47 and 2.76, the system kept the inlet started beyond the steady-state unstart angle. However, the maximum transient angles of attack without unstart could not be determined because wind-tunnel mechanical-stop limits for angle of attack were reached

    Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method

    Get PDF
    We present a method of measuring galaxy power spectrum based on the multiresolution analysis of the discrete wavelet transformation (DWT). Since the DWT representation has strong capability of suppressing the off-diagonal components of the covariance for selfsimilar clustering, the DWT covariance for popular models of the cold dark matter cosmogony generally is diagonal, or jj(scale)-diagonal in the scale range, in which the second scale-scale correlations are weak. In this range, the DWT covariance gives a lossless estimation of the power spectrum, which is equal to the corresponding Fourier power spectrum banded with a logarithmical scaling. In the scale range, in which the scale-scale correlation is significant, the accuracy of a power spectrum detection depends on the scale-scale or band-band correlations. This is, for a precision measurements of the power spectrum, a measurement of the scale-scale or band-band correlations is needed. We show that the DWT covariance can be employed to measuring both the band-power spectrum and second order scale-scale correlation. We also present the DWT algorithm of the binning and Poisson sampling with real observational data. We show that the alias effect appeared in usual binning schemes can exactly be eliminated by the DWT binning. Since Poisson process possesses diagonal covariance in the DWT representation, the Poisson sampling and selection effects on the power spectrum and second order scale-scale correlation detection are suppressed into minimum. Moreover, the effect of the non-Gaussian features of the Poisson sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap

    Experimental Hamiltonian Identification for Qubits subject to Multiple Independent Control Mechanisms

    Get PDF
    We consider a qubit subject to various independent control mechanisms and present a general strategy to identify both the internal Hamiltonian and the interaction Hamiltonian for each control mechanism, relying only on a single, fixed readout process such as σz\sigma_z measurements.Comment: submitted to Proceedings of the QCMC04 (4 pages RevTeX, 5 figures

    An Analytical Approach to Inhomogeneous Structure Formation

    Full text link
    We develop an analytical formalism that is suitable for studying inhomogeneous structure formation, by studying the joint statistics of dark matter halos forming at two points. Extending the Bond et al. (1991) derivation of the mass function of virialized halos, based on excursion sets, we derive an approximate analytical expression for the ``bivariate'' mass function of halos forming at two redshifts and separated by a fixed comoving Lagrangian distance. Our approach also leads to a self-consistent expression for the nonlinear biasing and correlation function of halos, generalizing a number of previous results including those by Kaiser (1984) and Mo & White (1996). We compare our approximate solutions to exact numerical results within the excursion-set framework and find them to be consistent to within 2% over a wide range of parameters. Our formalism can be used to study various feedback effects during galaxy formation analytically, as well as to simply construct observable quantities dependent on the spatial distribution of objects. A code that implements our method is publicly available at http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added, Figure 2 axis relabele
    corecore