574 research outputs found

    Tunneling of Born-Infeld Strings to D2-Branes

    Get PDF
    A Born-Infeld theory describing a D2-brane coupled to a 4-form RR field strength is considered, and the general solutions of the static and Euclidean time equations are derived and discussed. The period of the bounce solutions is shown to allow a consideration of tunneling and quantum-classical transitions in the sphaleron region. The order of such transitions, depending on the strength of the RR field strength, is determined. A criterion is then derived to confirm these findings.Comment: 20 pages, 7 postscript figures, will appear in NP

    Carbon nanotubes vs graphene nanoplatelets for 3D-printable composites

    Get PDF
    Polymer-based composites with nanocarbon fillers are of great interest for the wide application range including the needs of wireless communication and the development of precise measuring means and medical devices. However, the composite properties such as excellent electromagnetic energy dissipation or tailorable conductivity are not enough to solve practical problems in engineering. To be fully applicable, the composite material must be low-cost and suitable for conventional methods of fabrication, for example 3D-printing. In current research the electromagnetic properties of PLA-based composites with graphene nanoplatelets and multiwall carbon nanotubes were investigated in microwave frequency range. The synergistic effect of two fillers was observed, the investigated materials proved to be prospective for 3D-printable composite production for electromagnetic applications such as fabrication of complex geometry microwave shields and antennas

    Singularities of the renormalization group flow for random elastic manifolds

    Full text link
    We consider the singularities of the zero temperature renormalization group flow for random elastic manifolds. When starting from small scales, this flow goes through two particular points ll^{*} and lcl_{c}, where the average value of the random squared potential turnes negative ($l^{*}$) and where the fourth derivative of the potential correlator becomes infinite at the origin ($l_{c}$). The latter point sets the scale where simple perturbation theory breaks down as a consequence of the competition between many metastable states. We show that under physically well defined circumstances $l_{c} to negative values does not take place.Comment: RevTeX, 3 page

    Marginal Pinning of Quenched Random Polymers

    Full text link
    An elastic string embedded in 3D space and subject to a short-range correlated random potential exhibits marginal pinning at high temperatures, with the pinning length Lc(T)L_c(T) becoming exponentially sensitive to temperature. Using a functional renormalization group (FRG) approach we find Lc(T)exp[(32/π)(T/Tdp)3]L_c(T) \propto \exp[(32/\pi)(T/T_{\rm dp})^3], with TdpT_{\rm dp} the depinning temperature. A slow decay of disorder correlations as it appears in the problem of flux line pinning in superconductors modifies this result, lnLc(T)T3/2\ln L_c(T)\propto T^{3/2}.Comment: 4 pages, RevTeX, 1 figure inserte

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing 0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Metastability of (d+n)-dimensional elastic manifolds

    Full text link
    We investigate the depinning of a massive elastic manifold with dd internal dimensions, embedded in a (d+n)(d+n)-dimensional space, and subject to an isotropic pinning potential V(u)=V(u).V({\bf u})=V(|{\bf u}|). The tunneling process is driven by a small external force F.{\bf F}. We find the zero temperature and high temperature instantons and show that for the case 1d61\le d\le 6 the problem exhibits a sharp transition from quantum to classical behavior: At low temperatures T<TcT<T_{c} the Euclidean action is constant up to exponentially small corrections, while for T>Tc,T> T_{c}, SEucl(d,T)/=U(d)/T.{S_{\rm Eucl}(d,T)}/{\hbar} = {U(d)}/{T}. The results are universal and do not depend on the detailed shape of the trapping potential V(u)V({\bf u}). Possible applications of the problem to the depinning of vortices in high-TcT_{c} superconductors and nucleation in dd-dimensional phase transitions are discussed. In addition, we determine the high-temperature asymptotics of the preexponential factor for the (1+1)(1+1)-dimensional problem.Comment: RevTeX, 10 pages, 3 figures inserte

    A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    Get PDF
    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed

    Quantum depinning of a pancake-vortex from a columnar defect

    Full text link
    We consider the problem of the depinning of a weakly driven (FFcF\ll F_{c}) pancake vortex from a columnar defect in a Josephson-coupled superconductor, where FF denotes the force acting on the vortex (FcF_{c} is the critical force). The dynamics of the vortex is supposed to be of the Hall type. The Euclidean action SEucl(T)S_{Eucl}(T) is calculated in the entire temperature range; the result is universal and does not depend on the detailed form of the pinning potential. We show that the transition from quantum to classical behavior is second-order like with the temperature TcT_{c} of the transition scaling like F4/3.F^{{4}/{3}}. Special attention is paid to the regime of applicability of our results, in particular, the influence of the large vortex mass appearing in the superclean limit is discussed.Comment: 11 pages, RevTeX, 4 figures inserte
    corecore