195 research outputs found

    Neutron scattering study of novel magnetic order in Na0.5CoO2

    Full text link
    We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below T_N=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and non-ordered Co ions. The domains of magnetic order are closely coupled to the domains of Na ion order, consistent with such a two-fold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.Comment: 4 pages, 4 figure

    Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio

    Direct transition from a disordered to a multiferroic phase on a triangular lattice

    Get PDF
    Competing interactions and geometric frustration provide favourable conditions for exotic states of matter. Such competition often causes multiple phase transitions as a function of temperature and can lead to magnetic structures that break inversion symmetry, thereby inducing ferroelectricity [1-4]. Although this phenomenon is understood phenomenologically [3-4], it is of great interest to have a conceptually simpler system in which ferroelectricity appears coincident with a single magnetic phase transition. Here we report the first such direct transition from a paramagnetic and paraelectric phase to an incommensurate multiferroic in the triangular lattice antiferromagnet RbFe(MoO4)2 (RFMO). A magnetic field extinguishes the electric polarization when the symmetry of the magnetic order changes and ferroelectricity is only observed when the magnetic structure has chirality and breaks inversion symmetry. Multiferroic behaviour in RFMO provides a theoretically tractable example of ferroelectricity from competing spin interactions. A Landau expansion of symmetry-allowed terms in the free energy demonstrates that the chiral magnetic order of the triangular lattice antiferromagnet gives rise to a pseudoelectric field, whose temperature dependence agrees with that observed experimentally.Comment: 16 pages pdf including 3 figure

    Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    Get PDF
    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy (1H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects

    Na content dependence of superconductivity and the spin correlations in Na_{x}CoO_{2}\cdot 1.3H_{2}O

    Full text link
    We report systematic measurements using the ^{59}Co nuclear quadrupole resonance(NQR) technique on the cobalt oxide superconductors Na_{x}CoO_{2}\cdot 1.3H_{2}O over a wide Na content range x=0.25\sim 0.34. We find that T_c increases with decreasing x but reaches to a plateau for x \leq0.28. In the sample with x \sim 0.26, the spin-lattice relaxation rate 1/T_1 shows a T^3 variation below T_c and down to T\sim T_c/6, which unambiguously indicates the presence of line nodes in the superconducting (SC) gap function. However, for larger or smaller x, 1/T_1 deviates from the T^3 variation below T\sim 2 K even though the T_c (\sim 4.7 K) is similar, which suggests an unusual evolution of the SC state. In the normal state, the spin correlations at a finite wave vector become stronger upon decreasing x, and the density of states at the Fermi level increases with decreasing x, which can be understood in terms of a single-orbital picture suggested on the basis of LDA calculation.Comment: version published in J. Phys. Condens. Matter (references updated and more added

    Thermodynamic properties of Ba1-xMxFe2As2 (M = La and K)

    Full text link
    The specific heat C(T)C(T) of BaFe2_2As2_2 single crystal, electron-doped Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 and hole-doped Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2 polycrystals were measured. For undoped BaFe2_2As2_2 single crystal, a very sharp specific heat peak was observed at 136 K. This is attributed to the structural and antiferromagnetic transitions occurring at the same temperature. C(T)C(T) of the electron-doped non-superconducting Ba0.7_{0.7}La0.3_{0.3}Fe2_2As2_2 also shows a small peak at 120 K, indicating a similar but weaker structural/antiferromagnetic transition. For the hole-doped superconducting Ba0.5_{0.5}K0.5_{0.5}Fe2_2As2_2, a clear peak of C/TC/T was observed at TcT_c = 36 K, which is the highest peak seen at superconducting transition for iron-based high-TcT_c superconductors so far. The electronic specific heat coefficient γ\gamma and Debye temperature ΘD\Theta_D of these compounds were obtained from the low temperature data

    Structure and Magnetic Order in the NdFeAs(O,F) Superconductor System

    Full text link
    The transition temperature Tc~26 K of the recently discovered superconductor LaFeAs(O,F) has been demonstrated to be extremely sensitive to the lanthanide ion, reaching 55 K for the Sm containing oxypnictides. Therefore, it is important to determine how the moment on the lanthanide affects the overall magnetism in these systems. Here we report a neutron diffraction study of the Nd oxypnictides. Long ranged antiferromagnetic order is apparent in NdFeAsO below 1.96 K. Rietveld refinement shows that both Fe and Nd magnetic ordering are required to describe the observed data with the staggered moment 1.55(4) Bohr magneton per Nd and 0.9(1) Bohr magneton per Fe at 0.3 K. The other structural properties such as the tetragonal-orthorhombic distortion are found to be very similar to those in LaFeAsO. Neither the magnetic ordering nor the structural distortion occur in the superconducting sample NdFeAsO0.80F0.20 at any temperatures down to 1.5 K.Comment: 4 pages, 5 figures, 1 table. Identical to v3, correct HTML front matter; Scientific data and conclusions the same as in v

    Emergent excitations in a geometrically frustrated magnet

    Full text link
    Frustrated systems are ubiquitous and interesting because their behavior is difficult to predict. Magnetism offers extreme examples in the form of spin lattices where all interactions between spins cannot be simultaneously satisfied. Such geometrical frustration leads to macroscopic degeneracies, and offers the possibility of qualitatively new states of matter whose nature has yet to be fully understood. Here we have discovered how novel composite spin degrees of freedom can emerge from frustrated interactions in the cubic spinel ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly interacting antiferromagnetic loops whose directors, defined as the unique direction along which the spins are aligned parallel or antiparallel, govern all low temperature dynamics. The experimental evidence comes from a measurement of the magnetic form factor by inelastic neutron scattering. While the data bears no resemblance to the atomic form factor for chromium, they are perfectly consistent with the form factor for hexagonal spin loop directors. The hexagon directors are to a first approximation decoupled from each other and hence their reorientations embody the long-sought local zero energy modes for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques
    • …
    corecore