33 research outputs found

    On extra atmospheric radioastronomical investigations

    Get PDF
    Extraterrestrial radio waves in radio astronom

    Broadband microwave burst produced by electron beams

    Full text link
    Theoretical and experimental study of fast electron beams attracts a lot of attention in the astrophysics and laboratory. In the case of solar flares the problem of reliable beam detection and diagnostics is of exceptional importance. This paper explores the fact that the electron beams moving oblique to the magnetic field or along the field with some angular scatter around the beam propagation direction can generate microwave continuum bursts via gyrosynchrotron mechanism. The characteristics of the microwave bursts produced by beams differ from those in case of isotropic or loss-cone distributions, which suggests a new tool for quantitative diagnostics of the beams in the solar corona. To demonstrate the potentiality of this tool, we analyze here a radio burst occurred during an impulsive flare 1B/M6.7 on 10 March 2001 (AR 9368, N27W42). Based on detailed analysis of the spectral, temporal, and spatial relationships, we obtained firm evidence that the microwave continuum burst is produced by electron beams. For the first time we developed and applied a new forward fitting algorithm based on exact gyrosynchrotron formulae and employing both the total power and polarization measurements to solve the inverse problem of the beam diagnostics. We found that the burst is generated by a oblique beam in a region of reasonably strong magnetic field (200300\sim 200-300 G) and the burst is observed at a quasi-transverse viewing angle. We found that the life time of the emitting electrons in the radio source is relatively short, τl0.5\tau_l \approx 0.5 s, consistent with a single reflection of the electrons from a magnetic mirror at the foot point with the stronger magnetic field. We discuss the implications of these findings for the electron acceleration in flares and for beam diagnostics.Comment: Astrophysical Journal, accepted: 26 pages, 8 figure

    Transport of Cosmic Rays in Chaotic Magnetic Fields

    Get PDF
    The transport of charged particles in disorganised magnetic fields is an important issue which concerns the propagation of cosmic rays of all energies in a variety of astrophysical environments, such as the interplanetary, interstellar and even extra-galactic media, as well as the efficiency of Fermi acceleration processes. We have performed detailed numerical experiments using Monte-Carlo simulations of particle propagation in stochastic magnetic fields in order to measure the parallel and transverse spatial diffusion coefficients and the pitch angle scattering time as a function of rigidity and strength of the turbulent magnetic component. We confirm the extrapolation to high turbulence levels of the scaling predicted by the quasi-linear approximation for the scattering frequency and parallel diffusion coefficient at low rigidity. We show that the widely used Bohm diffusion coefficient does not provide a satisfactory approximation to diffusion even in the extreme case where the mean field vanishes. We find that diffusion also takes place for particles with Larmor radii larger than the coherence length of the turbulence. We argue that transverse diffusion is much more effective than predicted by the quasi-linear approximation, and appears compatible with chaotic magnetic diffusion of the field lines. We provide numerical estimates of the Kolmogorov length and magnetic line diffusion coefficient as a function of the level of turbulence. Finally we comment on applications of our results to astrophysical turbulence and the acceleration of high energy cosmic rays in supernovae remnants, in super-bubbles, and in jets and hot spots of powerful radio-galaxies.Comment: To be published in Physical Review D, 20 pages 9 figure

    Diffusion and drift of cosmic rays in highly turbulent magnetic fields

    Full text link
    We determine numerically the parallel, perpendicular, and antisymmetric diffusion coefficients for charged particles propagating in highly turbulent magnetic fields, by means of extensive Monte Carlo simulations. We propose simple expressions, given in terms of a small set of fitting parameters, to account for the diffusion coefficients as functions of magnetic rigidity and turbulence level, and corresponding to different kinds of turbulence spectra. The results obtained satisfy scaling relations, which make them useful for describing the cosmic ray origin and transport in a variety of different astrophysical environments.Comment: 17 pages, 7 figure

    Interstellar Turbulence II: Implications and Effects

    Full text link
    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spectrum and amplitude of fluctuations. The theory of diffraction and refraction is reviewed, as are the main observations and scintillation regions.Comment: 46 pages, 2 figures, submitted to Annual Reviews of Astronomy and Astrophysic

    THE ORIGIN OF NONTHERMAL GALACTIC RADIO EMISSION AND OF PRIMARY COSMIC RAYS

    No full text

    On the Existence of Ionospheric Feedback Instability in the Earth's Magnetosphere‐Ionosphere System

    No full text
    The ionospheric feedback instability (IFI) has been considered one of the main generation mechanisms for large-amplitude ultralow frequency waves and small-scale field-aligned currents in the auroral and subauroral regions for more than 40 years. Sydorenko and Rankin (2017, https://doi.org/10.1002/2017GL073415) have recently challenged the very existence of the IFI for any realistic geophysical conditions in the Earth\u27s ionosphere-magnetosphere system. Because this conclusion contradicts numerous theoretical, numerical, and experimental works successfully used IFI to explain and predict results from observations for more than four decades, it deserves special attention. We show that this conclusion is mainly based on the specific ionospheric density profile and boundary conditions used in two runs of simulations presented in Sydorenko and Rankin (2017), and the generalization of this result is not justified. The effect of the collisions between ionospheric ions and neutrals on the development of the instability has been well studied since 1981, and these studies demonstrate that it does not prevent the development of the instability. Furthermore, excellent agreement of the theoretical and numerical results with observations verify without doubt the IFI existence and significance in the Earth\u27s magnetosphere-ionosphere system

    Effects of the Hall Conductivity in Ionospheric Heating Experiments

    No full text
    We investigate the role of Hall conductivity in ionospheric heating experiments. Ionosphericheating by powerful X-mode waves changes the Hall and Pedersen conductances in theEandDregions,which lead to the generation of ultra-low frequency (ULF)/extremely-low frequency/very low frequencywaves, when the electric field exists in the ionosphere. The importance of the Hall currents in themagnetosphere-ionosphere interactions, carried by ULF waves and field-aligned currents, has beenconsistently overlooked in studies devoted tothe active experiments. Simulations of the three-dimensionaltwo-fluid magnetohydrodynamic (MHD) model, presented in this paper, demonstrate that the Hallconductivity changes (1) the growth rate and the amplitude of ULF waves generated by the heating and (2)the orientation and the direction of propagation of the generated waves. These findings provide insight inthe experiments where the waves were generated with a geometric modulation technique and suggest anew and more efficient approach for conducting such experiments in the future
    corecore