545 research outputs found

    Reliability Assessment of a Turbogenerator Coil Retaining Ring Based on Low Cycle Fatigue Data

    Get PDF
    Abstract Turbogenerator coil retaining rings are shrunk-fitted onto the rotor over the coils, in order to restrain them against the centrifugal force. They are typically subjected to low cycle fatigue, with a cycle being completed at every machine switch-on and switch-off. The subject of this paper consists in the determination of the failure probability of a coil retaining ring. The failure mode of the ring cracking, when it swells in tension, due to the centrifugal force is here considered. The reliability assessment is preceded by the study of the input variables affecting the low-cycle fatigue load and of their stochastic distributions. This question is tackled by the experimental determination of the static, cyclic and fatigue curves of the involved material and by the application of a statistical model to compute related parameters and their standard deviations. Upon the determination of variable distributions, the probability of failure is estimated in the form of a cumulative distribution function by a computationally efficient methodology, based on the Advanced Mean Value approach. The obtained results account for the material response and the local stressstrain states at the most loaded coil retaining ring region. The determined probability at the end of the machine life, in the order of 10-12, is compatible with reference values for structures under fatigue in the mechanical and aeronautical fields

    Biodegradable materials based on silk fibroin and keratin

    Get PDF
    Wool and silk were dissolved and used for the preparation of blended films. Two systems are proposed: (1) blend films of silk fibroin and keratin aqueous solutions and (2) silk fibroin and keratin dissolved in formic acid. The FTIR spectra of pure films cast from aqueous solutions indicated that the keratin secondary structure mainly consists of alpha-helix and random coil conformations. The IR spectrum of pure SF is characteristic of films with prevalently amorphous structure (random coil conformation). Pure keratin film cast from formic acid shows an increase in the amount of beta-sheet and disordered keratin structures. The FTIR pattern of SF dissolved in formic acid is characteristic of films with prevalently beta-sheet conformations with beta-sheet crystallites embedded in an amorphous matrix. The thermal behavior of the blends confirmed the FTIR results. DSC curve of pure SF is typical of amorphous SF and the curve of pure keratin show the characteristic melting peak of alpha-helices for the aqueous system. These patterns are no longer observed in the films cast from formic acid due to the ability of formic acid to induce crystallization of SF and to increase the amount of beta-sheet structures on keratin. The nonlinear trend of the different parameters obtained from FTIR analysis and DSC curves of both SF/keratin systems indicate that when proteins are mixed they do not follow additives rules but are able to establish intermolecular interactions. Degradable polymeric biomaterials are preferred candidates for medical applications. It was investigated the degradation behavior of both SF/keratin systems by in vitro enzymatic incubation with trypsin. The SF/keratin films cast from water underwent a slower biological degradation than the films cast from formic acid. The weight loss obtained is a function of the amount of keratin in the blend. This study encourages the further investigation of the type of matrices presented here to be applied whether in scaffolds for tissue engineering or as controlled release drug delivery vehicles

    Reverse Engineering of a Racing Motorbike Connecting Rod

    Get PDF
    The following scientific paper aims to analyze in detail the methodology for reverse engineering of a racing motorcycle connecting rod. The objective is to start with a product available on the market as a spare part, reconstruct its CAD model with a high standard of accuracy, then proceed with lightening modifications to arrive at a new, improved design. The innovative aspect of the procedure lies in the fact that in order to ensure accuracy on the order of a tenth of a millimeter during reconstruction, it was decided to use a FARO articulated arm laser to scan the component’s outer surface. By taking advantage of appropriate redesign CAD software (Geomagic Design X), a reconstruction can proceed within the high standard of accuracy imposed. In conclusion, the modifications made through material removal allow an improvement in product efficiency, ensuring high performance

    Seismic Resilient Steel Frames Equipped with Self-Centering Column Bases with Friction Devices

    Get PDF
    In the last two decades many researchers focused on the development of innovative building structures with the aim of achieving seismic resilience. Among others, steel Moment Resisting Frames (MRFs) equipped with friction devices in beam-to-column joints have emerged as an effective solution able to dissipate the seismic input energy while also ensuring the damagefree behaviour of the system. However, to date, little attention has been paid to their column bases, which represent fundamental components in order to achieve resilience. In fact, column bases designed by current conventional approaches lead to significant seismic damage and residual drifts leading to difficult-to-repair structures. This work assesses the seismic performance of steel MRFs equipped with an innovative damage-free, self-centering, rocking column base joints, developed in accordance with the aims of the European project FREEDAM. The proposed column base consists of a rocking splice joint where the seismic behaviour is controlled by a combination of friction devices, providing energy dissipation capacity, and pre-loaded threaded bars with disk springs, introducing restoring forces in the joint. The design procedure of the column base is presented, a numerical OpenSees model is developed to simulate the seismic response of a perimeter seismic-resistant frame, including the hysteretic behaviour of the connection. Non-linear dynamic analyses have been carried out to investigate the effectiveness of the column base in protecting the first storey columns from yielding and reducing the residual storey drifts. The results show that the damage-free behaviour of the column bases is a key requirement when self-centering of MRFs is a design objective

    Progressive collapse: the case of composite steel-concrete frames

    Get PDF
    Residual strength and alternate load paths are two fundamental design strategies to ensure adequate resistance against progressive collapse of structures. This paper presents an experimental study carried out on two full-scale steel and concrete composite frames to investigate their structural behaviour in case of a column collapse. The study focusses on the redundancy of the structure as provided by the beam-slab floor system as well as by the ductile beam-to-column joints. The specimens were ground floor sub-frames ‘extracted’ from two reference buildings designed in accordance to the Eurocodes. The frames have the same overall dimensions, but a different, symmetric and asymmetric, configuration of the column layout. In both tests, the collapse of an internal column was simulated. The paper presents the main features of the frames and the principal outcomes of the test on the symmetric frame

    Design and analysis of a seismic resilient steel moment resisting frame equipped with damage-free self-centering column bases

    Get PDF
    Many recent research studies focused on the development of innovative seismic resilient structures by chasing the objectives of minimising both seismic damage and repair time, hence allowing the definition of structures able to go back to the undamaged, fully functional condition, in a short time. In this context, the present study investigates an innovative type of self-centring damage-free steel column base (CB) connection and its beneficial effects when used within steel moment-resisting frames (MRFs). The proposed connection consists of a rocking column equipped with a combination of friction devices, providing energy dissipation capacity, and post-tensioned bars with disk springs, introducing restoring forces in the joint. Contrary to conventional steel CBs, the proposed connection exhibits moment–rotation behaviours that can be described by simple analytical equations, allowing the definition of an easy-to-apply design procedure. Numerical models of the connection, developed in OpenSees, are validated against experimental results and successively implemented within a four-storey case study steel MRF. Incremental Dynamic Analyses are performed to derive the samples of the demand for the engineering demand parameters of interest while accounting for the record-to-record variability. Fragility Curves show the effectiveness of the proposed solution in reducing the residual storey drifts and in protecting the first-storey columns from damage, hence providing significant advantages in terms of repairability, and hence resilience of the structure with a negligible increase on the overall cost. The results show that the damage-free behaviour of the CBs is a key requirement when self-centring of MRFs is a design objective

    Steel-concrete frames under the column loss scenario: An experimental study

    Get PDF
    Accidental events, such as impact loading or explosions, are rare events with a very low probability of occurrence. However, their effects often lead to very high human losses and economic consequences. An adequate design against these events should reduce the risk for the life of the occupancy, minimize the damage extension and enable a quick rebuilding and reuse. A structure fulfilling these requirements is ‘robust’. Different strategies can be pursued for accidental events, and among them, methods based on the residual strength or the alternate load path are frequently adopted because applicable to a vast range of structures. Adequate design strategies based on them require an in-deep knowledge of load transfer mechanisms from the damaged to the undamaged part of the structure. As to the frames, the important role of joint ductility was pointed out in recent studies. Besides, the flooring systems substantially affect the spread of the damage, but the research on this subject is still very limited. The present study focuses on steel-concrete composite frames under the column loss scenario. It aims to better understand the influence of both frame continuity and floor systems in the development of 3D membrane action. Two geometrically different 3D steel-concrete composite full-scale substructures were extracted from reference buildings and tested simulating the column collapse scenario. This paper illustrates the preparatory studies, the main features of the specimens and the outcomes of the first test. The test provided an insight in the need for an enhanced design of joints and pointed out the key features of the response of the floor system

    Seismic Response of a Steel Resilient Frame Equipped with Self-Centering Column Bases with Friction Devices

    Get PDF
    In the last two decades many researchers focused on the development of innovative building structures with the aim of achieving seismic resilience. Among others, steel Moment Resisting Frames (MRFs) equipped with friction devices in beam-to-column joints have emerged as an effective solution able to dissipate the seismic input energy while also ensuring the damage-free behaviour of the system. How-ever, to date, little attention has been paid to their column bases, which represent fundamental com-ponents in order to achieve resilience. In fact, column bases designed by current conventional ap-proaches lead to significant seismic damage and residual drifts leading to difficult-to-repair structures. The present paper evaluates the seismic performance of steel MRFs equipped with an innovative dam-age-free, self-centring, rocking column base joints. The proposed column base consists of a rocking splice joint where the seismic behaviour is controlled by a combination of friction devices, providing energy dissipation capacity, and pre-loaded threaded bars with disk springs, introducing restoring forces in the joint. The design procedure of the column base is presented, a numerical OpenSees model is developed to simulate the seismic response of a perimeter seismic-resistant frame, including the hysteretic behav-iour of the connection. Non-linear dynamic analyses have been carried out on a set of ground motions records to investigate the effectiveness of the column base in protecting the first storey columns from yielding and in reducing the residual storey drifts. Incremental Dynamic Analyses are used to investigate the influence of the record-to-record variability and to derive fragility curves for the whole structure and for several local engineering demand parameters of the frame and of the column base connection. The results show that the damage-free behaviour of the column bases is a key requirement when self-cen-tering of MRFs is a design objective

    Stability of Boundary Conditions for the Sadowsky Functional

    Get PDF
    It has been proved by the authors that the (extended) Sadowsky functional can be deduced as the Γ -limit of the Kirchhoff energy on a rectangular strip, as the width of the strip tends to 0. In this paper, we show that this Γ -convergence result is stable when affine boundary conditions are prescribed on the short sides of the strip. These boundary conditions include those corresponding to a Möbius band. This provides a rigorous justification of the original formal argument by Sadowsky about determining the equilibrium shape of a free-standing Möbius strip. We further write the equilibrium equations for the limit problem and show that, under some regularity assumptions, the centerline of a developable Möbius band at equilibrium cannot be a planar curve

    Seismic Design and Preliminary Analyses of a Prefabricated Hybrid Steel-Concrete Wall

    Get PDF
    Steel frames with reinforced concrete infill walls (SRCWs) are an interesting structural solution for applications in seismic areas if designed to exploit the stiffness of reinforced concrete (RC) and the ductility and dissipative capacity of steel. Three horizontal resisting mechanisms can be identified in SRCW: 1) contribution of the steel frame; 2) direct interactions between the steel frame and the compression strut in the RC infill walls; 3) interactions between steel frame and the RC infill wall through friction and shear connectors. While Eurocode 8 considers SRCWs to behave essentially as RC walls, numerical analyses demonstrated that this assumption may be far from reality. Innovative solutions for SRCW and relevant design approaches were eventually proposed in order to achieve a structural system able to fully exploit the advantages of the steel and RC components. In this context, the present study investigates a type of innovative modular SRCW through numerical simulations allowing a better understanding of its structural behaviour
    • …
    corecore